Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0
>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)
có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong
b) x2y + x + xy2 + y + 2xy = 9
xy(x + y + 2) + (x + y + 2) = 11
<=> (xy + 1)(x + y + 2) = 11
Xét các TH
+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9
+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)
<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
chuyển vế ta có:
\(x^2-2xy+2y^2-2x-1=x^2-2x\left(y+1\right)+2y^2-1\)
tinh penta ta có:
\(penta'=\left(y+1\right)^2-\left(2y^2-1\right)=-y^2+2y+2=-\left(y+1\right)^2+3\)
để pt có nghiệm nguyên thi penta' phai lon hon hoac bang 0
co penta' nho hon hoac bang 3
từ 2 điều trên ta có: 0 nho hon hoac bang penta' <3
theo penta' ta có \(x_1=y+1-\sqrt{-\left(y+1\right)^2+3}\)
\(x_2=y+1+\sqrt{-\left(y+1\right)^2+3}\)\
mà x nguyên, y nguyên nên ta có:
\(\sqrt{-\left(y+1\right)^2+3}thuocZ\) =>\(-\left(y+1\right)^2+3\) la SCP
ma 0 nho hon hoac bang \(-\left(y+1\right)^2+3\) <3
=>\(-\left(y+1\right)^2+3\) =0 hoặc =1
, nếu trường hợp nào cho cả 2 nghiệm x,y nguyên thì chọn
PT\(\Leftrightarrow x^2-2xy+2y^2=2x+2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2-2x=2\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(y-x\right)+1+y^2-2y+1=4\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-1\right)^2=4\)
Do x,y nguyên => Các hạng tử là số CP
Ta có các trường hợp
(y-1)2 | 0 | 4 |
(x-y-1)2 | 4 | 0 |
+) (y-1)2=0
=> y= 1
=> x= 0 hoặc 4
+) (y-1)2=4
=> y= -1 hoặc 3
=> (x;y)= (2;-1);(4;3)
Điều kiện xác định : \(\hept{\begin{cases}x\ge\frac{1}{2}\\y\ge1\\z\ge\frac{3}{4}\end{cases}}\)
Ta có : \(\sqrt{2x-1}+2\sqrt{2y-2}+3\sqrt{4z-3}=x+y+2z+4\)
\(\Leftrightarrow2\sqrt{2x-1}+4\sqrt{2y-2}+6\sqrt{4z-3}=2x+2y+4z+8\)
\(\Leftrightarrow\left(2x-1-2\sqrt{2x-1}+1\right)+\left(2y-2-4\sqrt{2y-2}+4\right)+\left(4z-3+6\sqrt{4z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2=0\)
Mà ta luôn có \(\left(\sqrt{2x-1}-1\right)^2\ge0\), \(\left(\sqrt{2y-2}-2\right)^2\ge0\), \(\left(\sqrt{4z-3}-3\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{2x-1}-1=0\\\sqrt{2y-2}-2=0\\\sqrt{4z-3}-3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=3\end{cases}}\) (TMDK)
Vậy (x;y;z) = (1;3;3)
x2+xy+y2=x2y2
\(\Leftrightarrow\left(y^2-1\right)x^2-xy-y^2=0\)(*)
Xét \(y^2=1\Leftrightarrow y=\pm1\)
- Với \(y=1\)thay vào (*) ta có: \(x=-1\)
- Với \(y=-1\)thay vào (*) ta có: \(x=1\)
Xét \(y\ne\pm1\) ta có: \(\Delta=y^2\left(4y^2-3\right)\) là 1 số chính phương
Đặt \(\left(2y\right)^2-3=n^2\left(n\in N\right)\)
\(\Leftrightarrow\left(2y\right)^2-n^2=3\)
\(\Leftrightarrow\left(\left|2y\right|-n\right)\left(\left|2y\right|+n\right)=3\)
Vì \(\left(\left|2y\right|+n\right)\in N;\left(\left|2y\right|-n\right)\in N\)\(\Rightarrow2y+n\ge\left|2y\right|-n\)
Ta có hệ \(\hept{\begin{cases}\left|2y\right|+n=3\\\left|2y\right|-n=1\end{cases}}\Leftrightarrow\left|2y\right|=2\Leftrightarrow y=\pm1\)
Không thỏa mãn vì \(y\ne\pm1\)
Vậy ta có nghiệm của pt \(\left(x;y\right)\in\left\{\left(0;0\right);\left(-1;-1\right);\left(-1;1\right)\right\}\)
\(\Leftrightarrow x^2+y^2+2xy+2x+2y+1=x^2y^2+2xy+1-1\)
\(\Leftrightarrow\left(x+y+1\right)^2=\left(xy+1\right)^2-1\)
\(\Leftrightarrow\left(xy+1\right)^2-\left(x+y+1\right)^2=1\)
\(\Leftrightarrow\left(xy+x+y+2\right)\left(xy-x-y\right)=1\)
Phương trình ước số cơ bản