Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=a\) (1)
Điều kiện :
\(\begin{cases}1+x\ge0\\8-x\ge0\\\left(1+x\right)\left(8-x\right)\ge0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x\ge-1\\x\le8\\-1\le x\le8\end{cases}\) \(\Leftrightarrow\) \(x\in\left[-1;8\right]\) : = (*)
Đặt \(t=\sqrt{1+x}+\sqrt{8-x}\) với điều kiện \(x\in\) (*) ta có
\(\begin{cases}t\ge0\\t^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\end{cases}\)
\(\Rightarrow\) \(\begin{cases}t\ge0\\9\le t^2\le9+\left(1+x+8-x\right)=18\end{cases}\)
\(\Rightarrow\) \(t\in\left[3;3\sqrt{2}\right]\) : = (*1)
Ngoài ra, từ đó còn có \(\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{t^2-9}{2}\)
Phương trình (1) trở thành
\(f\left(t\right)=\frac{1}{2}\left(t^2+2t-9\right)=a\) (2)
1) Với a=3 ta có :
(2) \(\Leftrightarrow\) \(t^2+2t-15=0\) \(\Leftrightarrow\) \(\begin{cases}t=3\\t=-5\end{cases}\)
Trong 2 nghiệm trên, chỉ có t =3 thuộc (*1) nên với a=3 ta có
(1) \(\Leftrightarrow\) \(\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{3^2-9}{2}=0\) \(\Leftrightarrow\) \(\begin{cases}x=-1\\x=8\end{cases}\)
Hai nghiệm này cùng thuộc (*) như vậy khi a=3, phương trình đã cho có 2 nghiệm x=-1 và x=8
2)Nhận thấy phương trình (1) có nghiệm \(x\in\) (*) khi và chỉ khi phương trình (2)
có nghiệm t\(\in\) (*1) hay là khi và chỉ khi đường thẳng y=a (vuông góc với y'Oy) có điểm ching với phần đồ thị hàm số y=f(t) vẽ trên ( *1).
Lập bảng biến thiên của hàm số y = f(t) trên (*1) với nhận xét rằng f'(t) = t+1>0, mọi t \(x\in\) (*)
t | \(-\infty\) 3 \(3\sqrt{2}\) \(+\infty\) |
f'(t) | + |
f (t) | \(\frac{9+6\sqrt{2}}{2}\) 3 |
Từ nhận xét trên và từ bảng biến thiên, ta được \(3\le a\le\frac{9+6\sqrt{2}}{2}\) là giá trị cần tìm
Đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\left(y\ge-\dfrac{1}{2}\right)\).
Ta có hpt:
\(\left\{{}\begin{matrix}14y^2+14y=2x+1\\14x^2+14x=2y+1\end{matrix}\right.\)
\(\Rightarrow14\left(x^2-y^2\right)+16\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y=\dfrac{-8}{7}\end{matrix}\right.\).
Đến đây thế vào là được.
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Theo định lý vi-et ta có:
\(\left\{{}\begin{matrix}xy=a+b\\x+y=ab\end{matrix}\right.\) (với x,y à nghiệm của phương trình)
Giả sử ab>xy
Suy ra x+y>xy suy ra x.(1-y)+y-1>-1 suy ra (x-1)(y-1)<1 suy ra x=1 hoặc y=1
Suy ra 1-ab+a+b=0(vì tổng các hệ số =0) suy ra a=(1+b)/(b-1) ( đến đoạn này là ok)
Giả sử xy>ab Suy ra a+b>ab suy ra a=1 hoặc b=1
Với a=1 suy ra điều kiện để pt có nghiêm nguyên là: b^2 − 4(1+b) = k^2 ⇒ (b−2−k).(b−2+k) = 8(đến đoạn này ok)
Trường hợp còn lại CM tương tự
ĐKXĐ: \(x\ge1\)
\(x-1+\sqrt{5+\sqrt{x-1}}=5\)
Đặt \(\sqrt{x-1}=t\ge0\)
\(\Rightarrow t^2+\sqrt{t+5}=5\)
Đặt \(\sqrt{t+5}=u>0\Rightarrow u^2-t=5\)
\(\Rightarrow t^2+u=u^2-t\Leftrightarrow t^2-u^2+t+u=0\)
\(\Leftrightarrow\left(t+u\right)\left(t-u+1\right)=0\)
\(\Leftrightarrow t-u+1=0\) (do \(t>0;u>0\Rightarrow t+u>0\))
\(\Leftrightarrow t+1=\sqrt{t+5}\)
\(\Leftrightarrow t^2+2t+1=t+5\Leftrightarrow t^2+t-4=0\)
\(\Rightarrow t=\dfrac{-1+\sqrt{17}}{2}\)
\(\Rightarrow x=t^2+1=\dfrac{11-\sqrt{17}}{2}\)
ab+ba-a!=b!
trừ a từ cả 2 vế của phương trình