K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

7z = 2x . 3y - 1 (*)

Vì x, y nguyên dương nên 2x . 3y \(⋮\) 3 \(\Rightarrow\) 2x . 3y - 1 \(\equiv\) 2 (mod 3) (1)

Ta có: 7x \(\equiv\) 1x (mod 3) \(\equiv\) 1 (mod 3) (2)

Từ (*), (1), (2) \(\Rightarrow\) Phương trình vô nghiệm

13 tháng 11 2019

Ta có:

\(2^x.3^y⋮6\)

\(\Rightarrow2^x.3^y-1\) chia 6 dư - 1 (1)

Ta lại có:

\(7^z\)chia 6 dư 1 (2)

Từ (1), (2) suy ra phương trình đã cho vô nghiệm nguyên dương.

13 tháng 12 2015

Sorry, mình mới học lớp 6 !

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

Lời giải:

$4500=2^2.3^2.5^3$

$x< y< z$ nên $x=3$.

Khi đó: $5^3+2.5^y+5^z=4500$

$\Rightarrow 2.5^y+5^z=4375$

$5^y(2+5^{z-y})=4375=5^4.7$

Vì $2+5^{z-y}\not\vdots 5$ với mọi $y< z$ nên $5^y=5^4\Rightarrow y=4$

$\Rightarrow 2+5^{z-y}=7$

$5^{z-4}=5\Rightarrow z-4=1\Rightarrow z=5$

 

Với [x>0x<−1][x>0x<−1] ta có:
x3<x3+x2+x+1<(x+1)3⇒x3<y3<(x+1)3x3<x3+x2+x+1<(x+1)3⇒x3<y3<(x+1)3 (không thỏa mãn)
Suy ra −1≤x≤0−1≤x≤0. Mà x∈Z⇒x∈{−1;0}x∈Z⇒x∈{−1;0}
⋆⋆ Với x=−1x=−1 ta có: y=0y=0
⋆⋆ Với x=0x=0 ta có: y=1y=1

18 tháng 4 2018

Trả lời

Giải phương trình nghiệm nguyên dương
y(y+1)2+x(x+1)2=8xyy(y+1)2+x(x+1)2=8xy


Do x,y>0x,y>0 nên ta có
(y+1)2x+(x+1)2y=8(y+1)2x+(x+1)2y=8
Mặt khác ta có
(y+1)2x+(x+1)2y2(x+1)(y+1)xy2.2x.2yxy=8(y+1)2x+(x+1)2y≥2(x+1)(y+1)xy≥2.2x.2yxy=8
Vậy PT đã cho có nghiệm duy nhất x=y=1x=y=1

18 tháng 4 2018

Dấu = của bđt thức, x=y=1