Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}=3\)
b) \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-5}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\\ \Leftrightarrow\dfrac{5\left(x+3\right)+4\left(x-3\right)}{x^2-9}=\dfrac{x-5}{x^2-9}\\ \Leftrightarrow5x+15+4x-12=x-5\\ \Leftrightarrow5x+4x-x=-5-15+12\\ \Leftrightarrow8x=-8\\ \Leftrightarrow x=-1\left(TM\right)\\ Vậy:S=\left\{-1\right\}\)
=>5(4x-1)-2+x<=3(10x-3)
=>20x-5+x-2<=30x-9
=>21x-7<=30x-9
=>-9x<=-2
=>x>=2/9
\(\dfrac{x+1}{94}+\dfrac{x+2}{93}+\dfrac{x+3}{92}=\dfrac{x+4}{91}+\dfrac{x+5}{90}+\dfrac{x+6}{89}\)
\(\Rightarrow\dfrac{x+1}{94}+1+\dfrac{x+2}{93}+1+\dfrac{x+3}{92}+1=\dfrac{x+4}{91}+1+\dfrac{x+5}{90}+1+\dfrac{x+6}{89}+1\)
\(\Rightarrow\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}=\dfrac{x+95}{91}+\dfrac{x+95}{90}+\dfrac{x+95}{89}\)
\(\Rightarrow\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}-\dfrac{x+95}{91}-\dfrac{x+95}{90}-\dfrac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\right)=0\)
Vì \(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\ne0\) nên \(x+95=0\Leftrightarrow x=-95\)
Mk làm luôn nhé , không chép lại đề đâu !!! Ahihi
\(\dfrac{x+1}{94}+1+\dfrac{x+2}{93}+1+\dfrac{x+3}{92}+1=\dfrac{x+4}{91}+1+\dfrac{x+5}{90}+1+\dfrac{x+6}{89}+1\)⇔\(\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}-\dfrac{x+95}{91}-\dfrac{x+95}{90}-\dfrac{x+95}{89}=0\)
⇔ \(\left(x+95\right)\)\(\left(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\right)\) = 0
⇔\(x+95=0\)
⇔ \(x=-95\)
Vậy , ......
a: \(\Leftrightarrow4x+4+9\left(2x+1\right)=2\left(5x+3\right)+12x+7\)
=>4x+4+18x+9=10x+6+12x+7
=>22x+13=22x+13(luôn đúng)
b: \(\Leftrightarrow\left(\dfrac{x+1}{94}+1\right)+\left(\dfrac{x+2}{93}+1\right)+\left(\dfrac{x+3}{92}+1\right)=\left(\dfrac{x+4}{91}+1\right)+\left(\dfrac{x+5}{90}+1\right)+\left(\dfrac{x+6}{89}+1\right)\)
=>x+95=0
=>x=-95
g: =>12x+1>=36x+12-24x-3
=>12x+1>=12x+9(loại)
h: =>6(x-1)+4(2-x)<=3(3x-3)
=>6x-6+8-4x<=9x-9
=>2x+2<=9x-9
=>-7x<=-11
=>x>=11/7
i: =>4x^2-12x+9>4x^2-3x
=>-12x+9>-3x
=>-9x>-9
=>x<1
\(\Leftrightarrow\dfrac{x-5}{95}-1+\dfrac{x-132}{32}+1=\dfrac{x-131}{31}+1+\dfrac{x-10}{90}-1\)
=>x-100=0
hay x=100
\(\Leftrightarrow\dfrac{4\cdot90\cdot\left(x+5\right)-4\cdot90\cdot x}{4x\left(x+5\right)}=\dfrac{x\left(x+5\right)}{4x\left(x+5\right)}\)
\(\Leftrightarrow x^2+5x-1800=0\)
\(\text{Δ}=5^2-4\cdot1\cdot\left(-1800\right)=7225>0\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-5-85}{2}=\dfrac{-90}{2}=-45\left(nhận\right)\\x_2=\dfrac{-5+85}{2}=40\left(nhận\right)\end{matrix}\right.\)