Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
1) \(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)
Vậy ...
\(x^4-3x^3+4x^2-3x-1=0\)
\(\Leftrightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow(x^3+x^2+x^2+x+x+1)\left(x+1\right)=0\)
\(\Leftrightarrow[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)]\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}(x+1)^2=0\\x^2+x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\\varnothing\end{cases}}\Rightarrow x=-1\)
Câu 1:
Đặt \(x+1=a\). Khi đó \(x+3=a+2; x-1=a-2\).
PT đã cho tương đương với:
\((a+2)^4+(a-2)^4=626\)
\(\Leftrightarrow 2a^4+48a^2+32=626\)
\(\Leftrightarrow a^4+24a^2-297=0\)
\(\Leftrightarrow (a^2+12)^2=441\)
\(\Rightarrow a^2+12=\sqrt{441}=21\) (do \(a^2+12>0)\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Nếu $a=3$ thì \(x=a-1=2\)
Nếu $a=-3$ thì $x=a-1=-4$
Câu 2:
Đặt \(2x-1=a; x-1=b\). PT đã cho tương đương với:
\(a^3+b^3+(-a-b)^3=0\)
\(\Leftrightarrow a^3+b^3-(a+b)^3=0\)
\(\Leftrightarrow a^3+b^3-[a^3+b^3+3ab(a+b)]=0\)
\(\Leftrightarrow ab(a+b)=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\\ a+b=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} 2x-1=0\\ x-1=0\\ 3x-2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=1\\ x=\frac{2}{3}\end{matrix}\right.\)
Ví dụ 3: Giải phương trình : (4).
Giải: Ta có phương trình:
, phương trình này có nghiệm: .
Do vậy
,
và .
a) Ta có :\(2x^4-x^3-9x^2+13x-5=0=>\left(x-1\right)^3\left(2x+5\right)=0\)
=>\(\left\{\begin{matrix}\left(x-1\right)^3=0\\2x+5=0\end{matrix}\right.=>\left\{\begin{matrix}x-1=0\\2x=-5\end{matrix}\right.=>\left\{\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\)
Vậy tập nghiệm của phương trình S={-2,5 ;1}
b)\(x^4-2x^3-11x^2+12x+36=0=>\left(x-3\right)^2\left(x+2\right)^2=0\)
=>\(\left\{\begin{matrix}\left(x-3\right)^2=0=>x-3=0=>x=3\\\left(x+2\right)^2=0=>x+2=0=>x=-2\end{matrix}\right.\)
Vậy tập nghiệm của pt là S={-2;3}
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
(x^5-x^4)-(4x^4-4x^3)-(6x^3-6x^2) +(11x^2-11x)-(2x-2)=0
(x-1)(x^4-4x^3-6x^2+11x-2)=0
(x-1)[(x^4-x^3)-(3x^3-3x^2) -(9x^2-9x)+(2x-2)]=0
(x-1)(x-1)(x^3-3x^2-9x+2)=0
➞x=1