Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x4 - 13x2 + 36 = 0
Đặt : x2 = t , t > 0 , ta có :
t2 - 13t + 36 = 0 \(\Leftrightarrow\) t = 9 hay t = 4
- Với t = 9 \(\Rightarrow\) x2 = 9 \(\Rightarrow\) x = + 3
- Với t = 4 \(\Rightarrow\) x2 = 4 \(\Rightarrow\) x = + 2
Vậy phương trình có 4 nghiệm
x1 = 3 ; x2 = -3 ; x3 = 2 ; x4 = -2
b, 3x4 + 7x2 - 10 =0
Đặt : x2 = t , t > 0 , ta có :
3t2 + 7t - 10 = 0
\(\Leftrightarrow\) t = 1 hay t = -\(\frac{10}{3}\) (loại )
- Với t = 1 \(\Rightarrow\) x2 = 1 \(\Rightarrow\) x = +1
Phương trình có hai nghiệm là :
x1 = 1 ; x2 = -1
(x2 + 3x + 2)(x2 + 7x + 12) = 24
=> (x + 1)(x + 2)(x + 3)(x + 4) = 24
=> (x2 + 5x + 4)(x2 + 5x + 6) = 24
Đặt a = x2 + 5x + 4 ta được:
a.(a + 2) = 24 => a2 + 2a - 24 = 0 => (a - 4)(a + 6) = 0 => a = 4 hoặc a = -6
+ Với a = 4 => x2 + 5x + 4 = 4 => x2 + 5x = 0 => x(x + 5) = 0 => x = 0 hoặc x = -5
+ Với a = -6 => x2 + 5x + 4 = -6 => x2 + 5x + 10 = 0, mà x2 + 5x + 10 > 0 => vô nghiệm
Vậy x = 0 , x = -5
a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)
b. \(\Leftrightarrow x^3+x+3x^2+3=0\)
\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)
c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)
d.
\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)
e.
\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)
Câu c;d giải \(\Delta\)
Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự
a/ \(x^4-2x^2-8=0\left(1\right)\)
Đặt: \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Rightarrow t^2-2t-8=0\)
( a = 1; b = -2; c = -8 )
\(\Delta=b^2-4ac\)
\(=\left(-2\right)^2-4.1.\left(-8\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)
\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)
Vậy: S = {-2;2}
\(\Leftrightarrow x^3-3x^2+3x-1=-2x^3\)
\(\Leftrightarrow\left(x-1\right)^3=-2x^3\)
\(\Leftrightarrow x-1=-\sqrt[3]{2}x\)
\(\Leftrightarrow x=\frac{1}{1+\sqrt[3]{2}}\)