Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(6x^4+5x^3-38x^2+5x+6=0\)
\(\Leftrightarrow6x^4+20x^3+6x^2-15x^3-50x^2-15x+6x^2+20x+6=0\)
\(\Leftrightarrow2x^2\left(3x^2+10x+3\right)-5x\left(3x^2+10x+3\right)+2\left(3x^2+10x+3\right)=0\)
\(\Leftrightarrow\left(3x^2+10x+3\right)\left(2x^2-5x+2\right)=0\)
\(\Leftrightarrow\left(3x^2+x+9x+3\right)\left(2x^2-x-4x+2\right)=0\)
\(\Leftrightarrow\left[x\left(3x+1\right)+3\left(3x+1\right)\right]\left[x\left(2x-1\right)-2\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+3\right)\left(2x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(3x+1=0\)
hoặc \(x+3=0\)
hoặc \(2x-1=0\)
hoặc \(x-2=0\)
\(\Leftrightarrow\)\(x=-\frac{1}{3}\)
hoặc \(x=-3\)
hoặc \(x=\frac{1}{2}\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{3};-3;\frac{1}{2};2\right\}\)
a) 3x4 - 13x3 + 16x2 - 13x + 3 = 0
(x - 3)(3x - 1)(x2 - x + 1) = 0
nhưng vì x2 - x + 1 # 0 nên:
x - 3 = 0 hoặc 3x - 1 = 0
x = 0 + 3 3x = 0 + 1
x = 3 3x = 1
x = 1/3
b) 6x4 + 5x3 - 38x2 + 5x + 6 = 0
(x - 2)(x + 3)(3x + 1)(2x - 1) = 0
x - 2 = 0 hoặc x + 3 = 0 hoặc 3x + 1 = 0 hoặc 2x - 1 = 0
x = 0 + 2 x = 0 - 3 3x = 0 - 1 2x = 0 + 1
x = 2 x = -3 3x = -1 2x = 1
x = -1/3 x = 1/2
\(pt\Leftrightarrow x^4+5x^2\left(x+1\right)-6\left(x+1\right)^2=0\)
Đặt \(a=x^2;b=x+1\) ta có pt
\(a^2+5ab-6b^2=0\Leftrightarrow\left(a-b\right)\left(a+6b\right)=0\)
<=> a =b ; a = -6b
Giải từng trường hợp
Đấm vào chữ đúng giùm em ạ
Các đại ca đẹp zai,các cô nương xinh đẹp
Ai tick em là người như thế,100 người thôi.
Ming no mo ka djd
x4-4x3-9x2+36x = 0
⇔ x (x3 - 4x2 - 9x +36 ) = 0
⇔\(\begin{cases} x = 0 \\ x^3 -4x^2 -9x +36 = 0 (1) \end{cases}\)
(1) ⇔ x3 - 4x2 - 9x +36 = 0
x1 = -3 (Nhận)
x2 = 4 (Nhận)
Vậy S = {0;-3;4}
a) \(\left(4x^2-25\right)\left(2x^2-7x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2-25=0\left(1\right)\\2x^2-7x-9=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=\frac{25}{4}\Leftrightarrow x=\pm\frac{5}{2}\)
\(\left(2\right)\Leftrightarrow2x^2-9x+2x-9=0\)
\(\Leftrightarrow2x\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{9}{2}\end{matrix}\right.\)
Vậy....
b) \(\left(2x^2-3\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3-2x+2\right)\left(2x^2-3+2x-2\right)=0\)
\(\Leftrightarrow\left(2x^2-2x-1\right)\left(2x^2+2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x-1=0\left(3\right)\\2x^2+2x-5=0\left(4\right)\end{matrix}\right.\)
\(\left(3\right)\Delta=2^2-4\cdot2\cdot\left(-1\right)=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2-\sqrt{12}}{4}=\frac{1-\sqrt{3}}{2}\\x=\frac{2+\sqrt{12}}{4}=\frac{1+\sqrt{3}}{2}\end{matrix}\right.\)
\(\left(4\right)\Delta=2^2-4\cdot2\cdot\left(-5\right)=44\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2-\sqrt{44}}{4}=\frac{-1-\sqrt{11}}{2}\\x=\frac{-2+\sqrt{44}}{4}=\frac{-1+\sqrt{11}}{2}\end{matrix}\right.\)
Vậy...
c) \(x^3+5x^2+7x+3=0\)
\(\Leftrightarrow x^3+3x^2+2x^2+6x+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
Vậy...
d) \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow x^3-2x^2-4x^2+8x+3x-6=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=3\end{matrix}\right.\)
Vậy...
\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)
\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)
Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d
b) \(2x^4+5x^3+x^2+5x+2=0\)
Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:
\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)
\(\Leftrightarrow2y^2+5y-3=0\)
PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3
Với y=1/2 thì không tìm được x
Với y=-3 thì tìm được 2 nghiệm, tự giải
pt bậc 4 => có 4 nghiệm.
bấm máy tính tìm nghiệm đẹp (-2 và 3). Chia sơ đồ hoocne.
2 nghiệm đẹp (-2 và 3) được rồi, còn 2 nghiệm còn lại thì giải pt bậc 2 là ra.
kq: x=-2, x=3, x=1/3 , x=-1/2
Ta có \(6x^4-5x^3-38x^2-5x+6=0\Leftrightarrow6x^4+12x^3-17x^3-34x^2-4x^2-8x+3x+6=0\Leftrightarrow6x^3\left(x+2\right)-17x^2\left(x+2\right)-4x\left(x+2\right)+3\left(x+2\right)=0\Leftrightarrow\left(x+2\right)\left(6x^3-17x^2-4x+3\right)=0\Leftrightarrow\left(x+2\right)\left(6x^3-18x^2+x^2-3x-x+3\right)=0\Leftrightarrow\left(x+2\right)\left[6x^2\left(x-3\right)+x\left(x-3\right)-\left(x-3\right)\right]=0\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(6x^2+x-1\right)=0\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(6x^2-2x+3x-1\right)=0\Leftrightarrow\left(x+2\right)\left(x-3\right)\left[2x\left(3x-1\right)+\left(3x-1\right)\right]=0\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(3x-1\right)\left(2x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x+2=0\\x-3=0\\3x-1=0\\2x+1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=3\\x=\dfrac{1}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy S={\(-\dfrac{1}{2};-2;\dfrac{1}{3};3\)}