K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

b: =>2x^2=11

=>x^2=11/2

=>\(x=\pm\dfrac{\sqrt{22}}{2}\)

c: Δ=5^2-4*1*7=25-28=-3<0

=>PTVN

f: =>6x^4-6x^2-x^2+1=0

=>(x^2-1)(6x^2-1)=0

=>x^2=1 hoặc x^2=1/6

=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)

d: =>(5-2x)(5+2x)=0

=>x=5/2 hoặc x=-5/2

e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2

=>3x^2+5x-8=0 và x>=-1/2

=>3x^2+8x-3x-8=0 và x>=-1/2

=>(3x+8)(x-1)=0 và x>=-1/2

=>x=1

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

4 tháng 4 2017

a) 2x2 – 7x + 3 = 0 có a = 2, b = -7, c = 3

∆ = (-7)2 – 4 . 2 . 3 = 49 – 24 = 25, \(\sqrt{\text{∆}}\) = 5

x1 = \(\dfrac{-\left(-7\right)-5}{2.2}\) = \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\), x2 =\(\dfrac{-\left(-7\right)+5}{2.2}=\dfrac{12}{4}=3\)

b) 6x2 + x + 5 = 0 có a = 6, b = 1, c = 5

∆ = 12 - 4 . 6 . 5 = -119: Phương trình vô nghiệm

c) 6x2 + x – 5 = 0 có a = 6, b = 5, c = -5

∆ = 12 - 4 . 6 . (-5) = 121, \(\sqrt{\text{∆}}\) = 11

x1 = \(\dfrac{-5-1}{2.3}\) = -1; x2 = \(\dfrac{-1+11}{2.6}\) =

d) 3x2 + 5x + 2 = 0 có a = 3, b = 5, c = 2

∆ = 52 – 4 . 3 . 2 = 25 - 24 = 1, \(\sqrt{\text{∆}}\) = 1

X1 = \(\dfrac{-5-1}{2.3}\) = -1, x2 = \(\dfrac{-5+1}{2.3}\) = \(\dfrac{-2}{3}\)

e) y2 – 8y + 16 = 0 có a = 1, b = -8, c = 16

∆ = (-8)2 – 4 . 1. 16 = 0

y1 = y2 = \(-\dfrac{-8}{2.1}\) = 4

f) 16z2 + 24z + 9 = 0 có a = 16, b = 24, c = 9

∆ = 242 – 4 . 16 . 9 = 0

z1 = z2 = \(\dfrac{-24}{2.16}\) = \(\dfrac{3}{4}\)

29 tháng 3 2022

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

29 tháng 3 2022

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)

 

  

a: Ta có: \(x^2+3x+4=0\)

\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)

Do đó: Phương trình vô nghiệm

3:

a: u+v=14 và uv=40

=>u,v là nghiệm của pt là x^2-14x+40=0

=>x=4 hoặc x=10

=>(u,v)=(4;10) hoặc (u,v)=(10;4)

b: u+v=-7 và uv=12

=>u,v là các nghiệm của pt:

x^2+7x+12=0

=>x=-3 hoặc x=-4

=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)

c; u+v=-5 và uv=-24

=>u,v  là các nghiệm của phương trình:

x^2+5x-24=0

=>x=-8 hoặc x=3

=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)

c: \(\Leftrightarrow x-3=0\)

hay x=3

4 tháng 1 2022

c: ⇔x−3=0⇔x−3=0

hay x=3

a)

5x2−3x=0⇔x(5x−3)=05x2−3x=0⇔x(5x−3)=0

⇔ x = 0 hoặc 5x – 3 =0

⇔ x = 0 hoặc x=35.x=35. Vậy phương trình có hai nghiệm: x1=0;x2=35x1=0;x2=35

Δ=(−3)2−4.5.0=9>0√Δ=√9=3x1=3+32.5=610=35x2=3−32.5=010=0Δ=(−3)2−4.5.0=9>0Δ=9=3x1=3+32.5=610=35x2=3−32.5=010=0

b)

3√5x2+6x=0⇔3x(√5x+2)=035x2+6x=0⇔3x(5x+2)=0

⇔ x = 0 hoặc √5x+2=05x+2=0

⇔ x = 0 hoặc x=−2√55x=−255

Vậy phương trình có hai nghiệm: x1=0;x2=−2√55x1=0;x2=−255

Δ=62−4.3√5.0=36>0√Δ=√36=6x1=−6+62.3√5=06√5=0x2=−6−62.3√5=−126√5=−2√55Δ=62−4.35.0=36>0Δ=36=6x1=−6+62.35=065=0x2=−6−62.35=−1265=−255

c)

2x2+7x=0⇔x(2x+7)=02x2+7x=0⇔x(2x+7)=0

⇔ x = 0 hoặc 2x + 7 = 0

⇔ x = 0 hoặc x=−72x=−72

Vậy phương trình có hai nghiệm: x1=0;x2=−72x1=0;x2=−72

Δ=72−4.2.0=49>0√Δ=√49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72Δ=72−4.2.0=49>0Δ=49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72

d)

2x2−√2x=0⇔x(2x−√2)=02x2−2x=0⇔x(2x−2)=0

⇔ x = 0 hoặc 2x−√2=02x−2=0

⇔ x = 0 hoặc x=√22x=22

Δ=(−√2)2−4.2.0=2>0√Δ=√2x1=√2+√22.2=2√24=√22x2=√2−√22.2=04=0