Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a và b e thay m=0 và m=3 vào pt.
câu c e thay x=-2 vào pt và tìm m
a,với m=0 thì
4x^2 - 25 +0^2 + 4*0*x=0
4x^2-25=0
(2x-5)(2x+5)=0
2x-5=0 hoặc 2x+5=0
x=5/2 hoặc x=-5/2
b,với m=-3 thi
4x^2-25+9-12x=0
4x^2-12x-16=0
(2x-4)^2-36=0
(2x-4-6)(2x-4+6)=0
(2x-10)(2x+2)=0
2x-10=0 hoặc 2x+2=0
x=5 hoặc x=-1
c,với x=-2 thì
16-25+m^2-8m=0-4-5
m^2-8m+16-25=0
(m-4)^2-5^2=0
(m-4-5)(m-4+5)=0
(m-9)(m+1)=0
m-9=0 hoặc m+1=0
m=9 hoặc m=-1
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
a) Xác định m để phương trình có một nghiệm x = 1.
b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.
Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :
\(x^3+mx^2-4x-4=0\)(1)
a) Thay \(x=1\), phương trình (1) trở thành :
\(1^3+m.1^2-4.1-4=0\)
\(\Leftrightarrow1+m-4-4=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(x=1\Leftrightarrow m=7\)
b) Thay \(m=7\), phương trình (1) trở thành :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)