K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

Đặt 4X - 19 =a; 4X -20 =b => 8X-39 = a + b

Từ đó ta có:
a^4 + b^4 = (a+b)^4 = a^4 + b^4 + 4a^3.b + 6a^2b^2 + 4ab^3
=> 4a^3.b + 6a^2.b^2 + 4a.b^3 = 0
ab(4a^2 + 6ab + 4b^2) =0
=> ab = 0 hoặc 4a^2 + 6ab +4b^2 = 0
TH1: ab = 0 -> 4x -19 =0 hoặc 4x-20 =0 => x =19/4 hoặc x = 20/4 =5
TH2: 4a^2 + 6ab +4b^2 = 0 => 2a^2 + 3ab +2b^2 = 0
Mà a - b = 1 ->a = 1+b
Thế vào ta có: 2(1+b)^2 + 3(1+b)+2b^2
= 2(1+2b+b^2) + 3b +3 + 2b^2
= 4b^2 + 7b +5
detal = 7*7 - 4*4*5 < 0 , phương trình vô nghiệm b

Vậy Phương trình ban đầu có 2 nghiệm X1 = 19/4, X2 =5

 

8 tháng 3 2017

X= 10000000

8 tháng 3 2017

Ghi lời giải giùm mình được không?

21 tháng 2 2016

Đặt x làm thừa số chung là ra đó bạn

21 tháng 2 2016

phương trình đa thức đối xứng

13 tháng 3 2018

a) \(\Leftrightarrow x^4-4x-1=0\)

\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)

\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)

\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)

Tự giải pt bậc 2 nhak :))))

\(a,-x^3+x^2+4=0\)

\(-\left(x^3-x^2-4\right)=0\)

\(x^3-2x^2+x^2+2x-2x-4=0\)

\(x^2\left(x-2\right)+x\left(x+2\right)-2\left(x+2\right)=0\)

\(x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)=0\)

\(\left(x-2\right)\left(x^2+x+2\right)=0\)

Vì \(x^2+x+2>0\left(\forall x\right)\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

23 tháng 6 2019

\(2x^2+2xy+y^2=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2=0\)

\(\Leftrightarrow\left(x+y\right)^2+x^2=0\)

\(\Leftrightarrow x=y=0\)

31 tháng 1 2016

\(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow\)  \(x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow\)  \(x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)  \(x^2\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\)  \(^{\left(x-2\right)^2=0}_{x^2-1=0}\)  \(\Leftrightarrow\)  \(^{x-2=0}_{x^2=1}\)  \(\Leftrightarrow\)  \(^{x=2}_{x=^+_-1}\)

Vậy,   \(S=\left\{-1;1;2\right\}\)

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

29 tháng 1 2020

a) \(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)

\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)

\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)

Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)

b) \(x^5-5x^3+4x=0\)

\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)

\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)

Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)

c) \(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow x-1=0\)

hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)

hoặc \(x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)