Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
\(\dfrac{3x}{x^2-x+3}-\dfrac{2x}{x^2-3x+3}+1=0\left(a\right)\)
Ta có : \(x^2-x+3=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\)
\(x^2-3x+3=x^2-3x+\dfrac{9}{4}+\dfrac{3}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\)
\(\RightarrowĐKXĐ:x\in R\)
Đặt : \(t=x^2-x+3\)
\(\left(a\right)\Leftrightarrow\dfrac{3x}{t}-\dfrac{2x}{t-2x}+1=0\)
\(\Leftrightarrow3x\left(t-2x\right)-2xt+t\left(t-2x\right)=0\)
\(\Leftrightarrow t^2-xt-6x^2=0\)
\(\Leftrightarrow t^2+2xt-3xt-6x^2=0\)
\(\Leftrightarrow t\left(t+2x\right)-3x\left(t+2x\right)=0\)
\(\Leftrightarrow\left(t-3x\right)\left(t+2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-3x=0\\t+2x=0\end{matrix}\right.\left(b\right)\)
Thay \(t=x^2-x+3\) lại vào (b) được :
\(\left[{}\begin{matrix}x^2-x+3-3x=0\\x^2-x+3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2+x+3=0\end{matrix}\right.\left(c\right)\)
Mà : \(x^2-4x+3=x^2-x-3x+3\)
\(=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\left(c'\right)\)
và : \(x^2+x+3=x^2+x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\left(c''\right)\)
Thay (c') và (c'') vào (c) được :
\(\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-1=0\Leftrightarrow x=1\left(tmđk\right)\\x-3=0\Leftrightarrow x=3\left(tmđk\right)\end{matrix}\right.\\\left(x+\dfrac{1}{2}\right)^2=-\dfrac{11}{4}\Leftrightarrow x\in\varnothing\end{matrix}\right.\)
Vậy : Phương trình có tập nghiệm \(S=\left\{1;3\right\}\)
1)\(\Leftrightarrow2x^2+3x-14=0\)
\(\Rightarrow3^2-\left(-4\left(2.14\right)\right)=121\)
\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{-3+-\sqrt{121}}{4}\)
=>\(x=2hoặc-\frac{7}{2}\)
tối nay tôi làm tiếp cho
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
- 3x – 2 = 0 => x = 3/2
- 4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
a) \(\left(x+2\right)^2-3x^2=-12\)
\(\Leftrightarrow x^2+4x+4-3x^2+12=0\)
\(\Leftrightarrow-2x^2+4x+16=0\)
\(\Leftrightarrow-2\left(x^2-2x-8\right)=0\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow x^2-4x+2x-8=0\)
\(\Leftrightarrow x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
Vậy....
b) \(3x^2-2x-1=0\)
\(\Leftrightarrow3x^2-3x+x-1=0\)
\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
Vậy....
c) \(\frac{7x-3}{x-1}=\frac{2}{3}\)ĐKXĐ : \(x\ne1\)
\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-2x=-2+9\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\frac{7}{19}\)( thỏa mãn ĐKXĐ )
Vậy....
d) \(\frac{3x-4}{x^2}-\frac{1}{x+1}=0\)
\(\Leftrightarrow\frac{3x-4}{x^2}=\frac{1}{x+1}\)
\(\Rightarrow\left(x+1\right)\left(3x-4\right)=x^2\)
\(\Leftrightarrow3x^2-x-4-x^2=0\)
\(\Leftrightarrow2x^2-x-4=0\)
....
Câu 1
Một ô tô đy từ A đến B với vận tốc 35km/h. Khi từ B về A ô tô đy với vận tốc 42km/h vì vậy thời gian về ít hơn thời gian đy là nửa giờ. Tính độ dài quãng đường AB.
Câu 2
Số học sinh của lớp 8a hơn số học sinh của lớp 8b là 5 bạn. Nếu chuyển 10 bạn từ lớp 8a sang lớp 8b thì số học sinh của lớp 8b sẽ gấp rưỡi số học sinh của lớp 8a. Tính số học sinh lúc đầu của mỗi lớp.
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
\(3x^2+2x-34+\frac{2}{x}+\frac{3}{x^2}=0\)(ĐK: \(x\ne0\))
Đặt \(x+\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}+2\Leftrightarrow x^2+\frac{1}{x^2}=t^2-2\)
Phương trình ban đầu tương đương với:
\(3\left(t^2-2\right)+2t-34=0\)
\(\Leftrightarrow3t^2+2t-40=0\)
\(\Leftrightarrow\left(3t-10\right)\left(t+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{10}{3}\\t=-4\end{cases}}\)
Với \(t=\frac{10}{3}\):
\(x+\frac{1}{x}=\frac{10}{3}\Leftrightarrow x^2-\frac{10}{3}x+1=0\Leftrightarrow\left(x-\frac{1}{3}\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=3\end{cases}}\)
Với \(t=-4\):
\(x+\frac{1}{x}=-4\Leftrightarrow x^2+4x+1=0\Leftrightarrow x^2+4x+4=3\Leftrightarrow\left(x+2\right)^2=3\)
\(\Leftrightarrow x=-2\pm\sqrt{3}\).