K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

-2x^5 - 7x^4 + 9x^3 = 0

<=> -x^3(2x^2 + 7x - 9) = 0

<=> -x^3(2x^2 + 9x - 2 - 9) = 0

<=> -x^3[x(2x + 9) - (2x + 9)] = 0

<=> x^3(x - 1)(2x + 9) = 0

<=> x^3 = 0 hoặc x - 1 = 0 hoặc 2x + 9 = 0

<=> x = 0 hoặc x = 1 hoặc x = -9/2

15 tháng 1 2019

\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)

Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2

4 tháng 4 2018

vì x=0 không là nghiệm của pt => chia cả 2 vế cho x2≠0

2x2-7x+9-\(\dfrac{7}{x}\)+\(\dfrac{2}{x^2}\)=0

<=>\(\left(2x^2+\dfrac{2}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+9=0\)

<=>\(2\left(x^2+\dfrac{1}{x^2}\right)-7\left(x+\dfrac{1}{x}\right)+9=0\)

đặt \(x+\dfrac{1}{x}\)=y =>\(x^2+\dfrac{1}{x^2}=y^2-2\) ta đc

2(y2-2)-7y+9=0

<=> 2y2-4-7y+9=0

<=>2y2-7y+5=0

<=> 2y2-2y-5y+5=0

<=> (2y2-2y)-(5y-5)=0

<=> 2y(y-1)-5(y-1)=0

<=>(y-1)(2y-5)=0

<=>\(\left\{{}\begin{matrix}y-1=0\\2y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\y=\dfrac{5}{2}\end{matrix}\right.\)

Với y=1 ta có

\(x+\dfrac{1}{x}=1\) =>x2-x+1=0 (vô nghiệm)

Với y=5/2

\(x+\dfrac{1}{x}=\dfrac{5}{2}\) => x=2 và x=\(\dfrac{1}{2}\)

vậy pt có S=\(\left\{2;\dfrac{1}{2}\right\}\)

 

 

4 tháng 4 2018

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-2x^3-x^3-4x^3+2x^2+x^2+4x^2+2x^2-x-4x-2x+2=0\)

\(\Leftrightarrow\left(2x^4-2x^3+2x^2\right)-\left(x^3-x^2+x\right)-\left(4x^3-4x^2+4x\right)+\left(2x^2-2x+2\right)=0\)

\(\Leftrightarrow2x^2\left(2x^2-2x+2\right)-\dfrac{1}{2}x\left(2x^2-2x+2\right)-2x\left(2x^2-2x+2\right)+\left(2x^2-2x+2\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x^2-\dfrac{1}{2}x-2x+1\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left[x\left(x-\dfrac{1}{2}\right)-2\left(x-\dfrac{1}{2}\right)\right]=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x-\dfrac{1}{2}\right)\left(x-2\right)=0\)

Vì: \(2x^2-2x+2=\left(\sqrt{2}x-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}>0\forall x\)

Nên: \(\left[{}\begin{matrix}x-\dfrac{1}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Vậy..................

p/s: 1 cách khác :))

9 tháng 2 2018

b) \(-x^2-12x+21=\left(3-x\right)\left(x+11\right).\)

\(\Leftrightarrow-x^2-12x+21=-x^2-8x+33\)

\(\Leftrightarrow33+4x=21\)

\(\Leftrightarrow-4x=12\)

\(\Rightarrow x=-3\)

c,\(9x+5x^2+1=5x^2-22+13x\)

\(\Leftrightarrow4x-22=1\)

\(\Leftrightarrow4x=23\)

\(\Rightarrow x=\frac{23}{4}\)

9 tháng 2 2018

Mk làm mẫu cho 1 pt nha !

a, 

pt <=> 4x^2-7x+5 = 2x^2-5x-18 

<=> (4x^2-7x+5)-(2x^2-5x-18) = 0

<=> 4x^2-7x+5-2x^2+5x+18 = 0

<=> 2x^2-2x+23 = 0

<=> x^2-x+23/2 = 0

<=> (x^2-x+1/4)+45/4 = 0

<=> (x-1/2)^2+45/4 = 0

=> pt vô nghiệm [ vì (x-1/2)^2+45/4 > 0 ]

P/S: Tham khảo nha

27 tháng 1 2016

a/. x3 - 9x2 +27x - 19 = 0

<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0

<=> (x - 3)3 + 8 = 0

<=> (x - 3 + 2) [(x - 3)- 2(x-3) +4] = 0

<=> (x -1)(x- 6x+ 9 -2x +6 +4) =0

<=> (x - 1)(x2  - 8x + 19) = 0

<=> x - 1 = 0 => x = 1

Vậy S = {1}

Xem lại đề câu b nha bạn?

c/. x3 + 1 -7x -7 =0 

<=> (x3 + 1) -7(x+1)=0

<=> (x+1)(x2-x+1) -7(x+1)=0

<=> (x+1)(x2-x+1-7)=0

<=> x + 1 = 0 hay x2 -x - 6 = 0

<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0 

<=>                   x(x - 3) +2(x-3) = 0

<=>                 (x - 3)(x+2) = 0

<=> x = -1 hay x = 3 hay x = -2

Vậy S = {-1;3;-2}

27 tháng 1 2016

X3 - X2-8X2+8X+19X-19=0

<=>X2(X-1)-8X(X-1)+19(X-1)=0

<=>(X-1)(X2-8X+19)=0

vi X2-8X+19=(X-4)2+3>3

 

 

15 tháng 7 2021

a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)

<=> \(9x^2-9x+2=9x^2+6x+1\)

<=>  \(15x=1\) <=> \(x=\frac{1}{15}\)

b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)

<=> \(4x^2+3x-1=4x^2-12x+9\)

<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)

c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)

<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)

<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)

15 tháng 7 2021

d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)

<=> 16 - 9x2 = 12x - 9x2 - 3

<=> 12x = 19

<=> x = 19/12

e) x(x + 1)(x + 2)(x + 3) = 24

<=> (x2 + 3x)(x2 + 3x + 2) = 24

<=> (x2 + 3x)2  + 2(x2 + 3x) - 24 = 0

<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0

<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0

<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

g) (7x - 2)2 = (7x - 3)(7x + 2)

<=> 49x2 - 28x + 4 = 49x2 - 7x - 6

<=> 21x = 10 <=> x = 10/21