Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x+2y-5\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{matrix}\right.\)
\(PT\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-y=0\\x+2y-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{y}{2}\\x=5-2y\end{matrix}\right.\)
Với \(x=\dfrac{y}{2}\) : \(PT\left(2\right)\Leftrightarrow\dfrac{y^2}{4}-y^2-3y^2+15=0\)
\(\Leftrightarrow-15y^2+60=0\)
\(\Leftrightarrow y^2-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Với \(x=5-2y\) : \(PT\left(2\right)\Leftrightarrow\left(5-2y\right)^2-2y\left(5-2y\right)-3y^2+15=0\)
\(\Leftrightarrow4y^2-20y+25+4y^2-10y-3y^2+15=0\)
\(\Leftrightarrow5y^2-30y+40=0\)
\(\Leftrightarrow y^2-6y+8=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy phương trình có 3 cặp nghiệm : \(\left[{}\begin{matrix}\left(x;y\right)=\left(-1;-2\right)\\\left(x;y\right)=\left(1;2\right)\\\left(x;y\right)=\left(-3;4\right)\end{matrix}\right.\)
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
Thay vào pt dưới:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)
\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)
TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:
\(\left(-2y-1\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)
TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:
\(\left(-2y-2\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)
\(y^2-y+x^2=2xy-x\)
\(\Leftrightarrow x^2-2xy+y^2+x-y=0\)
\(\Leftrightarrow\left(x-y\right)^2+x-y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=x+1\end{matrix}\right.\)
Thay xuống dưới:
\(\left[{}\begin{matrix}2x^2+x^2-x^2+x-3=0\\2x^2+x-\left(x+1\right)^2+x+1-3=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Ta lấy pt thứ 2 cộng 2 lần với pt thứ nhất ta được:
\(x^2+2xy+y^2+4x-4y+4=0\)
Hay: \(\left(x-y+2\right)^2=0\)
Ta suy ra \(y=x+2\). Thay trở lại pt thứ nhất của hệ ta được:
\(x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)
Trương đương với: \(x^2+5x+1=0\)
Vì vậy có nghiệm: \(x=\frac{-5\pm\sqrt{21}}{2}\).
Do đó: \(y=x+2=\frac{-1\pm\sqrt{21}}{2}\)
Vậy hệ pt đã cho có 2 nghiệm \(\left(x,y\right)=\left(\frac{-5+\sqrt{21}}{2};\frac{-1+\sqrt{21}}{2}\right);\left(\frac{-5-\sqrt{21}}{2};\frac{-1-\sqrt{21}}{2}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
\(\Rightarrow x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)
\(\Leftrightarrow...\)