Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y+z=6 (1) => (x + y + z)2 = 36 (4)
xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)
x2+y2+z2=14 (3)
Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2
Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:
y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3
Với y = 3 => x+ z = 9/3 = 3
Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1
Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)
x+y+z=6 (1) => (x + y + z)2 = 36 (4)
xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)
x2+y2+z2=14 (3)
Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2
Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:
y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3
Với y = 3 => x+ z = 9/3 = 3
Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1
Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)
Lời giải:
\(\Rightarrow (x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=36\)
Kết hợp với \(x^2+y^2+z^2=14\Rightarrow xy+yz+xz=11\)
Có \(\left\{\begin{matrix} xy+yz-xz=7\\ xy+yz+xz=11\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xz=2\\ xy+yz=9\rightarrow y(6-x)=9\rightarrow y=3\rightarrow x+z=3\end{matrix}\right.\)
Từ \(\left\{\begin{matrix} xz=2\\ x+z=3\end{matrix}\right.\Rightarrow \left[ \begin{array}{ll} (x,z)=(2,1) \\ \\ (x,z)=(1,2) \end{array} \right.\)
Vậy HPT có nghiệm \((x,y,z)=(2,3,1),(1,3,2)\)
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
1. (x;y;z) = (2;2;2) . Đó là hpt đối xứng
2.(x;y;z) = (1;1;1) . Đây cũng là hpt đối xứng