Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
Thay vào pt dưới:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)
\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)
TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:
\(\left(-2y-1\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)
TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:
\(\left(-2y-2\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)
a, #Góp ý từ nhiều người nhưng họ không giải nên t làm giùm
ĐK: \(x\le3\)
\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(xy-x+y\right)\left(1\right)\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+y^2+1-2xy+2x-2y=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\) \(\Leftrightarrow x-y+1=0\Leftrightarrow y=x+1\) Thay vào (2)
\(\left(2\right)\)\(\Leftrightarrow x^3+3\left(x+1\right)^2+5x-12=\left[12-\left(x+1\right)\right]\sqrt{3-x}\)
\(\Leftrightarrow x^3+3x^2+11x-9=\left(11-x\right)\sqrt{3-x}\)
\(\Leftrightarrow x^3+3x^2+8x=\left(11-x\right)\sqrt{3-x}+3\left(3-x\right)\)
\(\Leftrightarrow x^3+3x^2+8x=\left(3-x\right)\sqrt{3-x}+8\sqrt{3-x}+3\left(3-x\right)\)
\(\Leftrightarrow x^3+3x^2+8x=\sqrt{\left(3-x\right)^3}+3\sqrt{\left(3-x\right)^2}+8\sqrt{3-x}\)
\(\Leftrightarrow x=\sqrt{3-x}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{13}}{2}\left(tm\right)\Rightarrow y=\frac{1+\sqrt{13}}{2}\)
Vậy...
Akai Haruma, No choice teen, Arakawa Whiter, Phạm Hoàng Lê Nguyên, Vũ Minh Tuấn, tth, HISINOMA KINIMADO, Nguyễn Việt Lâm
Mn giúp e vs ạ! thanks!
Ta có : \(\left\{{}\begin{matrix}x^2-y^2-2y=1\left(I\right)\\\left(x+y\right)^2-2x-2y=0\left(II\right)\end{matrix}\right.\)
- Từ ( II ) ta được : \(\left(x+y\right)^2-2x-2y=0\)
=> \(\left(x+y\right)\left(x+y\right)-2\left(x+y\right)=0\)
=> \(\left(x+y\right)\left(x+y-2\right)=0\)
=> \(\left[{}\begin{matrix}x+y=0\\x+y-2=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=-y\\x=2-y\end{matrix}\right.\)
- TH1 : \(x=-y\)
- Thay \(x=-y\) vào phương trình ( I ) ta được :
\(\left(-y\right)^2-y^2-2y=1\)
=> \(-2y=1\)
=> \(y=-0,5\)
=> \(x=0,5\)
Vậy hệ phương trình có nghiệm là \(\left(x,y\right)=\left(\frac{1}{2},\frac{-1}{2}\right)\) .
TH2 : \(x=2-y\)
- Thay \(x=2-y\) vào phương trình ( I ) ta được :
\(\left(2-y\right)^2-y^2-2y=1\)
=> \(4-4y+y^2-y^2-2y=1\)
=> \(4-6y=1\)
=> \(y=\frac{1}{2}\)
=> \(x=\frac{3}{2}\)
Vậy hệ phương trình có nghiệm là \(\left(x,y\right)=\left(\frac{3}{2},\frac{1}{2}\right)\) .
Lấy pt dưới - pt trên ta thu được:
\(x^2+2x+2y+xy=0\)
\(\Leftrightarrow x\left(x+2\right)+y\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+y\right)=0\)
Nếu x + 2 =0 suy ra x = -2
Thay vào pt trên ta được: \(y^2+2y+1=0\Leftrightarrow\left(y+1\right)=0\Leftrightarrow y=-1\)
Với x + y = 0 suy ra x = -y. Thay vào pt trên ta thu được:
\(y^2+y^2+1=0\Leftrightarrow2y^2+1=0\) (vô lí do VT > 0 với mọi y). PT vô nghiệm với x + y = 0
Do vậy (x;y) = (-2;-1)
P/s: Em mới học, sai bỏ qua