Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2y+xy^2=30\Leftrightarrow\left(xy\right)^2-11xy+30=0\)
\(\orbr{\Leftrightarrow\begin{cases}xy=5\\xy=6\end{cases}}\)
Với xy=5 \(\Rightarrow x+y=6\). Suy ra x,y là hai nghiệm của phương trình : \(a^2-6a+5=0\Leftrightarrow\orbr{\begin{cases}a=1\\a=5\end{cases}}\)
Với xy=6 \(\Rightarrow x+y=5\). Suy ra x,y là hai nghiệm của phương trình: \(a^2-5a+6=0\Leftrightarrow\orbr{\begin{cases}a=2\\a=3\end{cases}}\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(2;3\right);\left(3;2\right);\left(1;5\right);\left(5;1\right)\)
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé
\(\hept{\begin{cases}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\left(1\right)\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\left(2\right)\end{cases}}\)
\(ĐK:x>-1;y\ge1\)
Đặt \(\sqrt{x+1}=u,\sqrt{y-1}=v\left(u>0,v\ge0\right)\Rightarrow\hept{\begin{cases}x=u^2-1\\y=v^2+1\end{cases}}\)
Khi đó, phương trình (1) trở thành: \(\left(u^2-v^2-2\right)^2+4=3\left(v^2+1\right)-5\left(u^2-1\right)+2uv\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4-3v^2+5u^2-8-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4\left(u^2-v^2-2\right)+4+u^2+v^2-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2\right)^2+\left(u-v\right)^2=0\)\(\Leftrightarrow\left(u-v\right)^2\left[\left(u+v\right)^2+1\right]=0\)
Dễ thấy \(\left(u+v\right)^2+1>0\)nên \(\left(u-v\right)^2=0\Leftrightarrow u=v\)
hay \(\sqrt{x+1}=\sqrt{y-1}\Leftrightarrow x+1=y-1\Leftrightarrow y=x+2\)
Từ (2) suy ra \(3xy-5y-6x+11=5\sqrt{x^3+1}\)(3)
Thay y = x + 2 vào (3), ta được: \(3x\left(x+2\right)-5\left(x+2\right)-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2+6x-5x-10-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2-5x+1=5\sqrt{x^3+1}\)
\(\Leftrightarrow3\left(x^2-x+1\right)-2\left(x+1\right)-5\sqrt{x+1}\sqrt{x^2-x+1}=0\)
\(\Leftrightarrow\left(3\sqrt{x^2-x+1}+\sqrt{x+1}\right)\left(\sqrt{x^2-x+1}-2\sqrt{x+1}\right)=0\)
Dễ thấy \(3\sqrt{x^2-x+1}+\sqrt{x+1}>0\forall x>-1\)nên \(\sqrt{x^2-x+1}=2\sqrt{x+1}\)
\(\Leftrightarrow x^2-x+1=4\left(x+1\right)\Leftrightarrow x^2-5x-3=0\)
Giải phương trình trên tìm được hai nghiệm là \(\frac{5\pm\sqrt{37}}{2}\left(TMĐK\right)\)
+) Với \(x=\frac{5+\sqrt{37}}{2}\Rightarrow y=\frac{9+\sqrt{37}}{2}\)
+) Với \(x=\frac{5-\sqrt{37}}{2}\Rightarrow y=\frac{9-\sqrt{37}}{2}\)
Vậy hệ phương trình có 2 nghiệm\(\left(x;y\right)\in\left\{\left(\frac{5+\sqrt{37}}{2};\frac{9+\sqrt{37}}{2}\right);\left(\frac{5-\sqrt{37}}{2};\frac{9-\sqrt{37}}{2}\right)\right\}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+3xy=10\\x^2+xy+4y^2+3xy=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2y\right)^2=16\\x^2+3xy=10\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2y=4\Rightarrow x=4-2y\\x^2+3xy=10\end{cases}}\) hoặc \(\hept{\begin{cases}x+2y=-4\Rightarrow x=-4-2y\\x^2+3xy=10\end{cases}}\)
Xong thế x=4-2y hoặc -4-2y vào phương trình x^2 +3xy=10 thành phương trình bậc 2 một ẩn, GPT=> x,y
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)
\(\hept{\begin{cases}x^3+y^3=1\\2y^3+x^2y+3xy^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x^3+3y^3=3\\2y^3+x^2y+3xy^2=3\end{cases}}}\)
\(\Rightarrow3x^3-x^2y-3xy^2+y^3=0\)
\(\Leftrightarrow x^2\left(3x-y\right)-y^2\left(3x-y\right)=0\)
\(\Leftrightarrow\left(3x-y\right)\left(x-y\right)\left(x+y\right)=0\)
đến đây biểu diễn y thae x rồi thay vào 1 trong 2 pt là ra
\(\hept{\begin{cases}x^2-y^2=1-xy\\x^2+y^2=3xy+11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-y^2+xy=1\\x^2+y^2-3xy=11\end{cases}}\)
\(\Rightarrow x^2+y^2-3xy=11x^2-11y^2+11xy\)
\(\Leftrightarrow10x^2-12y^2+14xy=0\)(1)
NX: y = 0 ko phải là nghiệm của hpt
Cùng chia cả 2 vế của (1) cho y2 ta đc
\(10.\left(\frac{x}{y}\right)^2-12+\frac{14x}{y}=0\)
Đặt \(\frac{x}{y}=a\)
\(\Rightarrow pt:10a^2+14a-12=0\)
Làm nốt
I
hệ đã cho tương đương với\(\hept{\begin{cases}11\left(x^2+xy-y^2\right)=11\\x^2-3xy+y^2=11\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+xy-y^2=1\\11\left(x^2+xy-y^2\right)=x^2-3xy+y^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+xy-y^2=1\\\left(x+2y\right)\left(5x-3y\right)=0\end{cases}}}\) (*)
Từ hệ (*) suy ra
\(\hept{\begin{cases}x^2+xy-y^2=1\\x^2+2y=0\end{cases}\left(I\right)}\)hoặc \(\hept{\begin{cases}x^2+xy-y^2=1\\\left(x+2y\right)\left(5x-3y\right)=0\end{cases}\left(II\right)}\)
Giải hệ (I) tìm được (c;y)=(2;-1);(-2;1)
Hệ (II) vô nghiệm
Vậy hệ phương trình có nghiệm (x;y)=(2;-1);(-2;1)