Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\left(1\right)\\y^2+x+2y\sqrt{x}-y^2x=0\left(2\right)\end{cases}}\)
đk: x>=0 và x>= y+1
ta có \(\left(1\right)\Leftrightarrow\sqrt{x}=1+\sqrt{x-y-1}\)
\(\Leftrightarrow x=1+x-y-1+2\sqrt{x-y-1}\Leftrightarrow2\sqrt{x-y-1}=y\)
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(x-y-1\right)=y^2\end{cases}\Leftrightarrow\hept{\begin{cases}y\ge0\\4x=\left(y+2\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}y\ge0\\\left|y+2\right|=2\sqrt{x}\end{cases}\Leftrightarrow}\hept{\begin{cases}y\ge0\\y+2=2\sqrt{x}\end{cases}}}\)
thay vào (2) \(\left(y+\sqrt{x}\right)^2=\left(y\sqrt{x}\right)^2\)
\(\Leftrightarrow y+\sqrt{x}=y\sqrt{x}\)ta được \(y+\frac{y+2}{2}=y\left(\frac{y+2}{2}\right)\)
\(\Leftrightarrow y^2-y-2=0\Leftrightarrow\orbr{\begin{cases}y=-1\left(loai\right)\\y=2\end{cases}}\)
do đó nghiệm hệ \(\hept{\begin{cases}x=4\\y=2\end{cases}}\)
Ta có \(\hept{\begin{cases}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{cases}\left(I\right)}\)
Ta có \(\left(I\right)\Leftrightarrow\hept{\begin{cases}x^2+\left(y+1\right)^2-x\left(y+1\right)=1\\2x^2=x+y+1\end{cases}}\left(II\right)\)
Đặt t=y+1 ta có hệ
\(\left(II\right)\Leftrightarrow\hept{\begin{cases}x^2+t^2-xt=1\\2x^3=\left(x+t\right)\left(x^2+t^2-xt\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+t^2-xt=1\\x=t\end{cases}\Leftrightarrow}\hept{\begin{cases}x=t=1\\x=t=-1\end{cases}}}\)
Với x=t=1 => y=0
Với x=t=-1 => y=-2
Vậy nghiệm hệ là (1;0);(-1;-2)
\(\hept{\begin{cases}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}xy^2+\left(2x+1\right)=4y\\\left(x^2y^2+2xy+1\right)y-2\left(2x+1\right)=-2y\end{cases}}\)(*)
- Xét y = 0 thay vào hệ (*), ta được hệ phương trình: \(\hept{\begin{cases}2x+1=0\\-2\left(2x+1\right)=0\end{cases}}\Leftrightarrow x=\frac{-1}{2}\)
Suy ra \(\left(\frac{-1}{2};0\right)\)là một nghiệm của hệ.
- Xét \(y\ne0\), hệ (*) tương đương với: \(\hept{\begin{cases}xy+\frac{2x+1}{y}=4\\x^2y^2+2xy+1-2\left(\frac{2x+1}{y}\right)=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(xy+1\right)+\frac{2x+1}{y}=5\\\left(xy+1\right)^2-2\left(\frac{2x+1}{y}\right)=-2\end{cases}}\)(**)
Đặt \(a=xy+1;b=\frac{2x+1}{y}\), khi đó hệ (**) trở thành: \(\hept{\begin{cases}a+b=5\\a^2-2b=-2\end{cases}}\)(***)
Giải hệ (***) tìm được \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)hoặc \(\hept{\begin{cases}a=-4\\b=9\end{cases}}\)
* Với \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)thì \(\hept{\begin{cases}xy+1=2\\\frac{2x+1}{y}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(\frac{2x+1}{3}\right)=1\\y=\frac{2x+1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)
* Với \(\hept{\begin{cases}a=-4\\b=9\end{cases}}\)thì \(\hept{\begin{cases}xy+1=-4\\\frac{2x+1}{y}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(\frac{2x+1}{9}\right)=-5\\y=\frac{2x+1}{9}\end{cases}}\)(vô nghiệm)
Vậy hệ phương trình có 3 nghiệm \(\left(x;y\right)\in\left\{\left(-\frac{1}{2};0\right);\left(1;1\right);\left(-\frac{3}{2};-\frac{2}{3}\right)\right\}\)