Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)
\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)
\(\Rightarrow P\le\frac{3}{4}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
Chúc bạn học tốt ~
1/ Đầu tiên ta chứng minh: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (1)
\(\Leftrightarrow\Sigma_{cyc}\left(\frac{a^3}{b}-a^2\right)\ge0\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2\left(a-b\right)}{b}-a\left(a-b\right)\right)+\Sigma_{cyc}a\left(a-b\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{a\left(a-b\right)^2}{b}+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{a\left(a-b\right)^2}{b}+\Sigma_{cyc}\frac{1}{2}\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)^2\left(2a+b\right)}{2b}\ge0\)
BĐT cuối đúng nên (1) đúng. (*)
Bây giờ ta đi chứng minh: \(a^2+b^2+c^2\ge5\)
Đặt \(\left(a+b+c;ab+bc+ca\right)\rightarrow\left(3u;3v^2\right)\) thì \(3u=9-3v^2\)
và \(a^2+b^2+c^2=\left(3u\right)^2-6v^2=\left(9-3v^2\right)^2-6v^2\)
\(=\left(3v^2-9\right)^2-6v^2=9v^4-60v^2+81\)
Đặt \(v^2=t\ge0\) .Ta cần tìm min của: \(9t^2-60t+81\)
Ta có: \(9t^2-60t+81=\left(3t-10\right)^2-19\ge-19\)
Dấu "=" xảy ra khi t = 10/3 tức là v= \(\sqrt{\frac{10}{3}}\)....
Em thấy có gì đó sai sai thì phải ạ:((
Câu 1:
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+ac+bc\ge2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+ac+bc\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)
//
\(a+b+c+ab+ac+bc\le a+b+c+\frac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)\ge9\)
\(\Rightarrow\left(a+b+c-\frac{3\sqrt{13}-3}{2}\right)\left(a+b+c+\frac{3\sqrt{13}+3}{2}\right)\ge0\)
\(\Rightarrow a+b+c\ge\frac{3\sqrt{13}-3}{2}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\ge\frac{1}{3}\left(\frac{3\sqrt{13}-3}{2}\right)^2=\frac{21-3\sqrt{13}}{2}>5\)
\(\Rightarrow a^2+b^2+c^2>5\)
Dấu "=" ko xảy ra
Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)
Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)
"=" Xảy ra khi và chỉ khi:
\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)
\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)
\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)
\(a+b+c=1\)
Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)
Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3
3
dat \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}=\frac{a}{b}\) dk (a,b)=1 a,b thuoc N*
khi do \(bx-by\sqrt{2014}=ay-az\sqrt{2014}\)
\(\Leftrightarrow bx-ay=\left(by-az\right)\sqrt{2014}\)
\(\Rightarrow\hept{\begin{cases}bx-ay=0\\by-az=0\end{cases}\Leftrightarrow\hept{\begin{cases}bx=ay\\by=az\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\Rightarrow xz=y^2}\)
khi do \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-y^2=\left(x+z-y\right)\left(x+y+z\right)\)
vi x^2 +y^2 +z^2 la so nt va x+y+z>1
nen \(\hept{\begin{cases}x+y+z=x^2+y^2+z^2\\x+z-y=1\end{cases}}\)
giai ra ta co x=y=z=1
Câu !! .1)\(PT< =>2x-2\sqrt{x-8}-6\sqrt{x}+2=0\)(đk:\(x\ge8\))
\(< =>x-8-2\sqrt{x-8}+1+x-6\sqrt{x}+9=0\)
\(< =>\left(\sqrt{x-8}-1\right)^2+\left(\sqrt{x}-3\right)^2=0\)
\(< =>\hept{\begin{cases}\sqrt{x-8}=1\\\sqrt{x}=3\end{cases}}\)
\(< =>x=9\)(thỏa mãn đk)
vậy.....