Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}:\dfrac{\sqrt{x}-1}{5}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{5}{\sqrt{x}-1}\) \(=\dfrac{5}{x+\sqrt{x}+1}\)
2) Ta thấy \(x+\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}+1\right)+1>1\forall x\)
\(\Rightarrow A< 5\)
\(\orbr{\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}]}\div\orbr{\begin{cases}\\\end{cases}(2\sqrt{x}-1)(\frac{1}{1-\sqrt{x}}+\frac{\sqrt{x}}{1-\sqrt{x}+x})]}\)
sori mng em bị lag xíu
ĐKXĐ: x>0; x ≠ 1
P = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
= \(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{x-1}.\dfrac{x-1}{\sqrt{x}}\)
= \(\dfrac{4x\sqrt{x}}{\sqrt{x}}\)= 4x
Vậy P = 4x với x > 0; x ≠ 1
b, PTGD (d1) và trục hoành là \(2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\Leftrightarrow B\left(-\dfrac{5}{2};0\right)\Leftrightarrow OB=\dfrac{5}{2}\)
PTGD (d2) và trục hoành là \(2-x=0\Leftrightarrow x=2\Leftrightarrow A\left(2;0\right)\Leftrightarrow OA=2\)
Do đó \(AB=OA+OB=\dfrac{9}{2}\)
PTHDGD (d1) và (d2) là \(2x+5=2-x\Leftrightarrow x=-1\Leftrightarrow y=3\Leftrightarrow C\left(-1;3\right)\)
Gọi H là chân đg cao từ C tới Ox thì \(CH=3\)
Do đó \(S_{ABC}=\dfrac{1}{2}CH\cdot AB=\dfrac{1}{2}\cdot\dfrac{9}{2}\cdot3=\dfrac{27}{4}\left(đvdt\right)\)
c, Vì \(-1=-1;2\ne4\) nên (d2)//(d3)
\(P=\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\) (đk:\(a\ge0;a\ne1\))
\(=\left[\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right).\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)
\(=\dfrac{1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2\sqrt{a}}=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)
2) \(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\)
\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}\ge\dfrac{\sqrt{a}+9}{8}\)
\(\Leftrightarrow16\sqrt{a}\ge\left(\sqrt{a}+9\right)\left(\sqrt{a}+1\right)\)
\(\Leftrightarrow a-6\sqrt{a}+9\le0\)
\(\Leftrightarrow\left(\sqrt{a}-3\right)^2\le0\)
Dấu "=" xảy ra khi \(\sqrt{a}-3=0\Leftrightarrow a=9\) (tm)
Vậy...
1) ĐKXĐ: \(a\ge0;a\ne1\)
\(P=\left[\dfrac{a+\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}.\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\right]\)\(:\left[\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\right]\)
\(\Leftrightarrow P=\left[\dfrac{\sqrt{a}.\left(\sqrt{a}+1\right)+2.\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right]\)\(:\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\)
\(\Leftrightarrow P=\left[\dfrac{\left(\sqrt{a}+2\right).\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right].\dfrac{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)
\(\Leftrightarrow P=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)
\(\Leftrightarrow P=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)
2) Có : \(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\)
\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}\ge\dfrac{\sqrt{a}+9}{8}\)
\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}-\dfrac{\sqrt{a}+9}{8}\ge0\)
\(\Leftrightarrow\dfrac{16\sqrt{a}-\left(\sqrt{a}+9\right).\left(\sqrt{a}+1\right)}{8.\left(\sqrt{a}+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{16\sqrt{a}-a-10\sqrt{a}-9}{8.\left(\sqrt{a}+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{-\left(a-6\sqrt{a}+9\right)}{8.\left(\sqrt{a}+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}-3\right)^2}{8.\left(\sqrt{a}+1\right)}\le0\)
Vì \(\sqrt{a}\ge0\Rightarrow8.\left(\sqrt{a}+1\right)>0\) mà \(\left(\sqrt{a}-3\right)^2\) \(\ge0\)
\(\Rightarrow\) \(\dfrac{\left(\sqrt{a}-3\right)^2}{8.\left(\sqrt{a}+1\right)}=0\) \(\Rightarrow\left(\sqrt{a}-3\right)^2=0\) \(\Leftrightarrow\sqrt{a}-3=0\Leftrightarrow\sqrt{a}=3\Leftrightarrow a=9\)
Vậy để\(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\) thì \(a=9\)
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Answer:
1.
\(\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=-1\\\left(1+\sqrt{3}\right)x-\sqrt{2}y=\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-\sqrt{6}y=\sqrt{2}\\\sqrt{3}\left(1+\sqrt{3}\right)x-\sqrt{6}y=\sqrt{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{3}+1\right)x=\sqrt{6}+\sqrt{2}\\y=\frac{\sqrt{2}x+1}{\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{3}+1\right)x=\sqrt{2}\left(\sqrt{3}+1\right)\\y=\frac{\sqrt{2}x+1}{\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\y=\sqrt{3}\end{cases}}\)
\(\hept{\begin{cases}4x-3y=-10\\\frac{x}{2}+\frac{5y}{4}=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-3y=-10\\2x+5y=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-3y=-10\\4x+10y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}13y=26\\4x+10y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2\\x=-1\end{cases}}\)
2.
\(\hept{\begin{cases}2x-3=0\\ax+\left(a-1\right)=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\ax+\left(a-1\right)y=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\\left(a-1\right)y=\frac{3}{2}-\frac{3}{2}a\left(1\right)\end{cases}}\)
Hệ có nghiệm duy nhất chỉ khi phương trình (1) có nghiệm duy nhất khi \(a-1\ne0\Leftrightarrow a\ne1\)
3.
7 giờ 12 phút = \(\frac{36}{5}\) giờ
Gọi x và y là thời gian để người thứ nhất và người thứ hai làm một mình xong công việc
Một giờ người thứ nhất làm được \(\frac{1}{x}\) công việc, một giờ người thứ hai làm được \(\frac{1}{y}\) công việc
Có: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{36}\\\frac{6}{x}+\frac{3}{y}=\frac{2}{3}\end{cases}}\)
Đặt \(n=\frac{1}{x};m=\frac{1}{y}\left(u;v>0\right)\)
Có:
\(\hept{\begin{cases}n+m=\frac{5}{36}\\6n+3m=\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}3n+3m=\frac{15}{36}\\6n+3m=\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}3n=\frac{1}{4}\\n+m=\frac{5}{36}\end{cases}}\Leftrightarrow\hept{\begin{cases}n=\frac{1}{12}\\m=\frac{1}{18}\end{cases}}\)