Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hệ phương trình:
x2+x−y−1=0 (1) |
y2+y−z−1=0 (2) |
z2+z−t−1=0 (3) |
t2+t−x−1=0 (4) Không mất tính tổng quát, giả sử min { x, y , z, t } suy ra x <= y, Từ (3), (4) suy ra x2 + x - 1 = y >= x suy ra x2 >= 1 Lấy (1) trừ (4) theo vế, ta được: ( x - t )( x + t +1 ) = y - x >=0 Nếu x khác t thì x + t + 1 <= 0, nếu x >= 1 suy ra t <= 0 suy ra t < x ( MT ), vậy x <= -1 . Với x <= -1, từ (1) suy ra x2 + x -1 = y nên y <= -1 (*) Mặt khác, từ (4) suy ra t2 - t <= 0 suy ra -1 <= t <= 0 (**) Từ (*), (**), suy ra y <= t. Lấy (1) trừ (3) ta được: ( x - z )( x + z + 1 ) = y - t suy ra x + z + 1 >= 0 suy ra z >= 0 (5). Vậy z >= t >= y >= x. Ta có z >= t = z2 + z - 1 suy ra -1 <= z <= 0 (6). Từ (5), (6) suy ra z = 0 suy ra t = -1, thay vào (3) suy ra z = 1 hoặc z = -2 (mâu thuẫn với z = 0) . Do đó nếu x khác t thì hệ vô nghiệm Nếu x = t thì từ (1) và (4) suy ra x = y, từ (1) và (2) suy ra y = z. Vậy x = y = z = t thay vào (1), ta được các nghiệm: x = y = z = t = -1 x = y = z = t = 1 |
Ta có (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
= 5ab(a + b)(a2 - ab + b2) + 10a2b2(a + b) + a5 + b5
= - 10(a2 - ab + b2) - 20ab + a5 + b5
= - 5(2a2 - 2ab + 2b2 + 4ab) + a5 + b5
= - 5(a2 + b2 + c2) + a5 + b5
=> a5 + b5 + c5 = - 5(a2 + b2 + c2) = 30
=> (a2 + b2 + c2) = - 6
Mà a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> ab + bc + ca = - 3 (1)
Ta lại có a + b = - c
<=> a3 + b3 + 3ab(a + b) = - c3
<=> a3 + b3 + c3 = 3abc = 6
<=> abc = 2 (2)
Từ (1) và (2) ta có hệ
\(\hept{\begin{cases}x+y+z=0\\xyz=2\\xy+yz+xz=-3\end{cases}}\)
Vậy x, y, z là nghiệm của pt
A3 - 3A - 2 = 0
Giải phương trình này tìm nghiệm. Vì vai trò x, y, z là như nhau nên sắp sếp ngẫu nhiên 3 nghiệm tìm được sẽ là nghiệm cần tìm
Cho 3 số -1; -1; 2 sắp xếp 3 số đó đi là có nghiệm phương trình đấy
Uầy, Bunyakovsky phát ra luôn nè :))
Ta có:
\(\left(x+3y+4z+t\right)^2\le\left(1^2+3^2+4^2+1^2\right)\left(x^2+y^2+z^2+t^2\right)=27\left(x^2+y^2+z^2+t^2\right)\)
Dấu "=" xảy ra khi: \(x=\frac{y}{3}=\frac{z}{4}=t\)
Đặt \(x=\frac{y}{3}=\frac{z}{4}=t=k\left(k\inℝ\right)\)
\(\Rightarrow\hept{\begin{cases}x=t=k\\y=3k\\z=4k\end{cases}}\) thay vào ta được: \(k^3+27k^3+64k^3+k^3=93\)
\(\Leftrightarrow93k^3=93\Rightarrow k^3=1\Rightarrow k=1\)
\(\Rightarrow\hept{\begin{cases}x=t=1\\y=3\\z=4\end{cases}}\)
Bài b nhé bạn!
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)
Trừ lại từng phương trình trong hệ:
\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)
Chia lại từng phương trình trong hệ mới, được:
\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)
Xong rồi đó!!!
Ây da :D Con ông Lệ bà Việt đây chứ đâu ? Á HÁ HÁ HÁ , gà :3 ko biết làm ak ?
\(\frac{x}{x-y}+\frac{y}{y-z}+\frac{z}{z-x}=0\left(1\right)\)
\(\frac{x}{\left(x-y\right)^2}+\frac{y}{\left(y-z\right)^2}+\frac{z}{\left(z-x\right)^2}=0\)
\(\left(1\right)\Rightarrow\left(\frac{x}{x-y}\right)^2+\left(\frac{y}{y-z}\right)^2+\left(\frac{z}{z-x}\right)^2=0\)
\(\Leftrightarrow\frac{x^2}{\left(x-y\right)^2}+\frac{y^2}{\left(y-z\right)^2}+\frac{z^2}{\left(z-x\right)^2}=0\)
Trừ vế với vế
\(\frac{x^2-x}{\left(x-y\right)^2}+\frac{y^2-y}{\left(y-z\right)^2}+\frac{z^2-z}{\left(z-x\right)^2}=0\)
\(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\y^2-y=0\\z^2-z=0\end{cases}}\)
<=> x=0 hoặc x=1; y=0 hoặc y=1; z=0 hoặc z=1
Mà \(x\ne y\ne z\)=> PT vô nghiệm
\(\hept{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2=50\left(2\right)\\x^7+y^7+z^7=350\left(3\right)\end{cases}}\)
Bình phương (1), kết hợp với (2) ta được:
\(xy+yz+zx=-25\left(4\right)\)
Từ \(\left(1\right)\Rightarrow z=-\left(x+y\right)\)thay vào (3) ta được:
\(x^7+y^7-\left(x+y\right)^7=350\)
\(\Rightarrow-xy\left(x+y\right)\left(x^2+xy+y^2\right)=50\left(5\right)\)
Lại thay \(z=-\left(x+y\right)\)vào (4) ta được:
\(x^2+xy+y^2=25\left(6\right)\)
Kết hợp (5) và (6) ta được: \(xyz=2\)
Vậy cần tìm x,y,z thỏa mãn \(\hept{\begin{cases}x+y+z=0\\xy+yz+zx=-5\\xyz=2\end{cases}}\)
Vậy x,y,z là 3 nghiệm của pt \(t^3-5t-2=0\)
Từ đó ta tìm được nghiệm của hệ là:
\(\left(x;y;z\right)=\left(-2;1-\sqrt{2};1+\sqrt{2}\right)\) và các hoán vị của nó
\(\left\{{}\begin{matrix}x+y+z+t=14\\x+y-z-t=-4\\x-y+z-t=-2\\x-y-z+t=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2z+2t=18\\2y+2t=16\\2y+2z=14\\x+y+z+t=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z+t=9\\y+t=8\\y+z=7\\x+y+z+t=14\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}z=9-t\\y=8-t\\y+z=7\\x+y+z+t=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-t+8-t=7\\z=9-t\\y=8-t\\x+y+z+t=14\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}17-2t=7\\z=9-t\\y=8-t\\x+y+z+t=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2t=10\\z=9-t\\y=8-t\\x+y+z+t=14\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}t=5\\z=9-5=4\\y=8-5=3\\x=14-z-t-y=14-5-4-3=2\end{matrix}\right.\)