K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

1/x+1/y+1/z=11/6 nha mấy bn

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

Câu a : \(4\sqrt{x+1}=x^2-5x+14\)

\(\Leftrightarrow x^2-5x+14-4\sqrt{x+1}=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x+1-4\sqrt{x+1}+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(\sqrt{x+1}-2\right)^2=0\end{matrix}\right.\Leftrightarrow x=3\)

Câu b : \(\left\{{}\begin{matrix}y=x^2\\z=xy\\\dfrac{1}{x}=\dfrac{1}{y}+\dfrac{6}{z}\end{matrix}\right.\) ( ĐK : \(x,y,z\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\left(1\right)\\z=x^3\left(2\right)\\\dfrac{1}{x}=\dfrac{1}{x^2}+\dfrac{6}{x^3}\left(3\right)\end{matrix}\right.\)

Xét phương trình (3) :

\(\left(3\right)\Leftrightarrow x^2=x+6\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

Thay từng giá trị của x vào pt (1) và (2) . Ta được những cặp nghiệm :

\(\left\{{}\begin{matrix}\left(x;y;z\right)=\left(-2;4;-8\right)\\\left(x;y;z\right)=\left(3;9;27\right)\end{matrix}\right.\)

7 tháng 4 2020

với x, y,z>0

8 tháng 4 2020

Phương trình ( 2 ) \(\Leftrightarrow\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(3x+2y+z\right)=36\)

\(\Leftrightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)=22\)

Áp dụng BĐT Cô-si, ta có : 

\(6\left(\frac{x}{y}+\frac{y}{x}\right)\ge12;3\left(\frac{x}{z}+\frac{z}{x}\right)\ge6;2\left(\frac{z}{y}+\frac{y}{z}\right)\ge4\)

\(\Rightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)\ge22\)

Dấu "=" xảy ra khi x = y = z

khi đó : ( 1 ) \(\Leftrightarrow x^3+x^2+x-14=0\)\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+7\right)=0\)

\(\Leftrightarrow x=2\)

Vậy hệ phương trình có nghiệm duy nhất x = y = z = 2

26 tháng 9 2016

Ta có 1 + x2 = xy + yz + xz + x2 = (xy + x2) + (yz + xz) = (x + y)(x + z)

=> \(1x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\:x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\:x\left|y+z\right|\)

26 tháng 9 2016

Tương tự như vậy thì ta có 

A = xy + xz + yx + yz + zx + zy = 2

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

NV
13 tháng 12 2020

1. Với mọi số thực x;y;z ta có:

\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)

\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)

\(\Rightarrow P\ge3\)

\(P_{min}=3\) khi \(x=y=z=1\)

1.1

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)

\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)

\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)

\(\Leftrightarrow a=b\Leftrightarrow x=y\)

Thay vào pt đầu:

\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))

\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)

\(\Rightarrow a=1\Rightarrow x=y=1\)

NV
13 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)

\(\Rightarrow4x^2-10xy+4y^2=0\)

\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu

...