Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2: ĐK..............
PT $(1)\Rightarrow \sqrt{y+1}=\frac{x-3}{2}$
$\Rightarrow y+1=\frac{(x-3)^2}{4}$
PT $(2)\Leftrightarrow x^3-4x^2\sqrt{y+1}+4x(y+1)-8(y+1)-9x+60=0$
$\Leftrightarrow x^3-4x^2.\frac{x-3}{2}+4x.\frac{(x-3)^2}{4}-8.\frac{(x-3)^2}{4}-9x+60=0$
$\Leftrightarrow x^3-2x^2(x-3)+x(x-3)^2-2(x-3)^2-9x+60=0$
$\Leftrightarrow -x^2+6x+7=0$
$\Leftrightarrow x=7$ hoặc $x=-1$
Từ PT $(1)$ dễ thấy $x\geq 3$ nên $x=7$
$\Rightarrow y=\frac{(x-3)^2}{4}=4$
Vậy...........
Câu 1:
ĐK:..............
PT $\Leftrightarrow x-3+\sqrt{x-1}=\sqrt{2(x^2-5x+5)}$
$\Rightarrow (x-3+\sqrt{x-1})^2=2(x^2-5x+5)$
$\Leftrightarrow 2(x-3)\sqrt{x-1}=x^2-5x+2$
$\Leftrightarrow x^2-5x+2-2(x-3)\sqrt{x-1}=0$
$\Leftrightarrow (x^2-6x+9)+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3)^2+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3-\sqrt{x-1})^2=6$
$\Leftrightarrow x-3-\sqrt{x-1}=\pm \sqrt{6}$
$\Leftrightarrow \sqrt{x-1}=x-3\pm \sqrt{6}$
$\Rightarrow x-1=(x-3\pm \sqrt{6})^2$ (ĐK: $x\geq 3\pm \sqrt{6}$)
Giải PT ta thu được $x=\frac{1}{2}(7+2\sqrt{6}+\sqrt{9+4\sqrt{6}})$
a/ ĐKXĐ:...
\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xy=4\\4y^2+xy=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x^2+15xy=20\\16y^2+4xy=20\end{matrix}\right.\)
\(\Rightarrow5x^2+11xy-16y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(5x+16y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-\frac{16}{5}y\end{matrix}\right.\)
Bạn tự thế vào một trong hai pt giải tiếp
Woa nghiệm đẹp:) Nhưng em giải đúng hay ko là một chuyện:v
ĐK: \(x\ge-\frac{3}{2}\)
PT \(\Leftrightarrow x^2+4x+3+\left(2-2\sqrt{2x+3}\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)+\frac{4-4\left(2x+3\right)}{2+\sqrt{2x+3}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8\left(x+1\right)}{2+\sqrt{2x+3}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{8}{2+\sqrt{2x+3}}\right)=0\)
Giải cái ngoặc nhỏ suy ra x = -1
Giải cái ngoặc to:
\(\Leftrightarrow x+3=\frac{8}{2+\sqrt{2x+3}}\)
Nghiệm xấu quá :( => em bí.
\(\hept{\begin{cases}\frac{3}{5x}+\frac{1}{y}=\frac{1}{10}\\\frac{3}{4x}+\frac{3}{4y}=\frac{1}{12}\end{cases}}\)
Đặt \(a=\frac{1}{x},b=\frac{1}{y}\)ta có HPT:
\(\hept{\begin{cases}\frac{3}{5}a+b=\frac{1}{10}\\\frac{3}{4}a+\frac{3}{4}b=\frac{1}{12}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3}{5}a+b=\frac{1}{10}\\a+b=\frac{1}{9}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{1}{36}\\b=\frac{1}{12}\end{cases}}}\)
Trở lại phép ẩn dụ ta có:
\(\hept{\begin{cases}\frac{1}{x}=\frac{1}{36}\\\frac{1}{y}=\frac{1}{12}\end{cases}\Leftrightarrow\hept{\begin{cases}x=36\\y=12\end{cases}}}\)
đặt \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{1}{y}\end{cases}}\)
khi đó hpt có dạng
\(\hept{\begin{cases}\frac{3}{5}.a+b=\frac{1}{10}\\\frac{3}{4}.a+\frac{3}{4}.b=\frac{1}{12}\end{cases}}\)
=>\(\hept{\begin{cases}a=\frac{1}{36}\\b=\frac{1}{12}\end{cases}}\) ( nhấn máy tính nhé)
=>\(\hept{\begin{cases}x=36\\y=12\end{cases}}\)
câu trả lời của thu hương rất hay!
Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không
hiihhi