Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(x=0\)không phải là nghiệm của hệ
\(\left\{{}\begin{matrix}2x^2+3xy+y^2=15\\x^2+xy+y^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}16x^2+24xy+8y^2=120\\15x^2+15xy+15y^2=120\end{matrix}\right.\)
Lấy trên trừ dưới ta được
\(x^2+9xy-7y^2=0\)
Đặt \(y=tx\) thì được
\(x^2+9tx^2-7t^2x^2=0\)
\(\Leftrightarrow7t^2-9t-1=0\)
Tới đây thì đơn giản rồi nhé
1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)
Lấy (1). 2 - (2) ta được:
\(2x^3+y^3-x^2y-2xy^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)
Đến đây dễ rồi nhé ^^
2/ Ta viết lại pt thứ 2 của hệ:
\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)
\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)
\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)
Bạn làm tiếp nhé!
3/ Ta viết lại pt thứ nhất của hệ
\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)
\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)
Bạn làm tiếp được chứ?
4/ Viết lại pt thứ 2 của hệ
\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)
\(x^2-3y.x+2y^2-y-1=0\)
\(\Delta=9y^2-4\left(2y^2-y-1\right)=y^2+4y+4=\left(y+2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y+y+2}{2}=2y+1\\x=\frac{3y-\left(y+2\right)}{2}=y-1\end{matrix}\right.\)
Thế xuống pt dưới:
\(\Rightarrow\left[{}\begin{matrix}\left(2y+1\right)^2+y^2-y-3=0\\\left(y-1\right)^2+y^2-y-3=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
Lời giải:
Lấy phương trình (1) nhân với $11$ rồi trừ đi phương trình (2) ta có:
\(11(x^2-y^2)-(x^2+y^2)=(11-11xy)-(3xy+11)\)
\(\Leftrightarrow 10x^2-12y^2=-14xy\)
\(\Leftrightarrow 5x^2-6y^2+7xy=0\)
\(\Leftrightarrow (5x-3y)(x+2y)=0\)
TH1 : \(5x-3y=0\Leftrightarrow x=\frac{3}{5}y\)
Thay vào PT(1): \(\Rightarrow \frac{-16}{25}y^2=1-\frac{3}{5}y^2\Leftrightarrow \frac{-1}{25}y^2=1\) (vô lý)
TH2: \(x+2y=0\Leftrightarrow x=-2y\)
\(\Leftrightarrow 3y^2=1+2y^2\Leftrightarrow y^2=1\)
\(\Leftrightarrow y=\pm 1\Rightarrow x=\mp 2\) (thử lại thấy đúng)
Vậy \((x,y)=(2; -1); (-2; 1)\)