Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: x, y, z khác 0
\(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=\frac{51}{4}\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2=\frac{867}{16}\end{cases}}\)
\(x+\frac{1}{x}=a;y+\frac{1}{y}=b;z+\frac{1}{z}=c\)
Ta có hệ >:
\(\hept{\begin{cases}a+b+c=\frac{867}{4}\\a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)
Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{867}{16}\) với mọi a, b,c
"=" xảy ra khi và chỉ khi a=b=c
Hay \(x+\frac{1}{x}=y+\frac{1}{y}=z+\frac{1}{z}=\frac{17}{4}\) giải ra tìm x, y, z
b) Hệ đối xứng:
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
Đặt x+y=S, xy=P
Ta có hệ :
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\\S^2-2P=6\end{cases}}\)
=> \(\hept{\begin{cases}P=2+3\sqrt{2}-S\\S^2-2\left(2+3\sqrt{2}-S\right)=6\end{cases}}\)
Tự giải tìm S, P
=> x,y
đặt \(\hept{\begin{cases}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\\z+\frac{1}{z}=c\end{cases}}\)=> \(\hept{\begin{cases}x^2+\frac{1}{x^2}=a^2-2\\y^2+\frac{1}{y^2}=b^2-2\\z^2+\frac{1}{z^2}=c^2-2\end{cases}}\)
thay vào đề ta đc: \(\hept{\begin{cases}a+b+c=\frac{51}{4}\\a^2+b^2+c^2-6=\frac{771}{16}=>a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)
mình chưa học giải hpt nên đến đây k biết lm đc nữa k
=))
Cộng 3 vế pt:
\(\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=6\)
Điều kiện xác định: x;y;z#0
Với \(x;y;z\in R>0\) áp dụng bất đẳng thức AM-GM cho 2 số dương:
\(VT\ge2\sqrt{\frac{x}{x}}+2\sqrt{\frac{y}{y}}+2\sqrt{\frac{z}{z}}=6=VP\)
Dấu "=" xảy ra khi: \(x=y=z=1\)
Với \(x;y;z\in R< 0\)thì \(\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)< 0\)mà \(6>0\Leftrightarrow pt\)vô nghiệm
Vậy: \(x=y=z=1\)
Đk: \(x,y,z\ne0\)Rút x và z từ các pt:
\(x=\frac{2y-1}{y}\)
\(z=\frac{1}{2-y}\)
Thay vào pt thứ 3 ta đk
\(\frac{1}{2-y}+\frac{1}{\frac{2y-1}{y}}=2\)
Giari ra đk: y=1(t/m)
Thay vào pt ta đk:x=1 và z=1(t/m)
ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)
pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)
Áp dụng BĐT Cauchy:
\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)
\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)
\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)
\(=4+2+10=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:
\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)
\(\Rightarrow yz=5xy\Rightarrow z=5x\)
Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)
\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)
Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)
\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)
Hướng dẫn:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\left(1\right)\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\left(2\right)\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\left(3\right)\end{cases}}\)
ĐK: \(x;y;z;x+y;y+z;z+x\ne0\)
TH1: x + y + z = 0
=> y + z = - x
thế vào (1); \(\frac{1}{x}+\frac{1}{-x}=\frac{1}{2}\)vô lí
TH2: x + y + z \(\ne\)0.
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x+y+z}{xy+xz}=\frac{1}{2}\\\frac{x+y+z}{yz+xy}=\frac{1}{3}\\\frac{x+y+z}{xz+yz}=\frac{1}{4}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{xy+xz}{x+y+z}=2\\\frac{yz+xy}{x+y+z}=3\\\frac{xz+yz}{x+y+z}=4\end{cases}}\)
Đặt : x + y + z = k
=> \(\hept{\begin{cases}xy+xz=2k\left(4\right)\\yz+xy=3k\left(5\right)\\xz+yz=4k\left(6\right)\end{cases}}\)<=> \(\hept{\begin{cases}xy=\frac{1}{2}k\\yz=\frac{5}{2}k\\xz=\frac{3}{2}k\end{cases}}\Leftrightarrow\hept{\begin{cases}2xy=k\\\frac{2yz}{5}=k\\\frac{2xz}{3}=k\end{cases}}\)
Trừ vế theo vế:
=> \(\hept{\begin{cases}x=\frac{z}{5}\\\frac{y}{5}=\frac{x}{3}\\\frac{z}{3}=y\end{cases}}\)<=> \(z=3y=5x\)thế vào (1) rồi tìm x; y ; z.
\(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\)
<=> \(\frac{23}{20x}=\frac{1}{2}\Leftrightarrow x=\frac{23}{10}\)
khi đó: \(y=\frac{5x}{3}=\frac{23}{6};z=5x=\frac{23}{2}\)thử lại thỏa mãn.