Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}2x^2+4x+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{cases}}\)
Thay (2) vào (1) ta có:
\(2x^2+2.2x+y^3+3=0\)
\(\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\)
\(\Leftrightarrow2x^2\left(y^3+1\right)+\left(2y+2\right)+\left(y^3+1\right)=0\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)=0\)
Dễ chứng minh \(\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)>0\)
\(\Rightarrow y+1=0\)
\(\Rightarrow y=-1\)
Thay vào có x=-1
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
Ta có hệ phương trình :
\(\hept{\begin{cases}x^2+7=4y^2+4y\left(1\right)\\x^2+3xy+2y^2+x+y=0\left(2\right)\end{cases}}\)
Từ (2) \(\Leftrightarrow x^2+xy+2xy+2y^2+x+y=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
*) Với \(x=-y\) thì từ (1) suy ra :
\(\left(-y\right)^2+7=4y^2+4y\)
\(\Leftrightarrow3y^2+4y-7=0\)
\(\Leftrightarrow\left(y-1\right)\left(3y+7\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{7}{3}\end{cases}}\)
+) Khi \(y=1\Rightarrow x=-1\)
+) Khi \(y=-\frac{7}{3}\Rightarrow x=\frac{7}{3}\)
*) Với \(x=-2y-1\) thì từ (1) suy ra :
\(\left(-2y-1\right)^2+7=4y^2+4y\)
\(\Leftrightarrow4y^2+4y+1+7=4y^2+4y\)
\(\Leftrightarrow0=8\) ( Vô lí )
Vậy \(\left(x,y\right)\in\left\{\left(-1,1\right);\left(\frac{7}{3},-\frac{7}{3}\right)\right\}\)
Ta có HPT : \(\hept{\begin{cases}2x+y=x^2\\2y+x=y^2\end{cases}}\)
\(\Leftrightarrow x^2-y^2=2x+y-2y-x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=x-y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)
TH1 : \(x-y=0\)
\(\Leftrightarrow x=y\)
\(\Leftrightarrow2x+x=x^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=0\\x=y=3\end{cases}}\)
TH2 : \(x+y-1=0\)
\(\Leftrightarrow2\left(1-y\right)+y=\left(1-y\right)^2\)
\(\Leftrightarrow2-2y+y=1-2y+y^2\)
\(\Leftrightarrow y^2-y-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=\frac{1+\sqrt{5}}{2}\Leftrightarrow x=\frac{1-\sqrt{5}}{2}\\y=\frac{1-\sqrt{5}}{2}\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(3;3\right);\left(\frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right);\left(\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\right)\right\}\)
Em chỉ biết cộng trừ sương sương nên ko chắc lắm :)
\(\hept{\begin{cases}2x^2-5xy+2y^2-x+2y=0\\x^2+3xy+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2-2xy+2y^2+2y=0\\x^2+3xy+x=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}9x^2-6xy+6y^2+2y=0\\2x^2+6xy+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}11x^2+6y^2+2y=0\\2x^2+6xy+x=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}22x^2+12y^2+4y=0\\22x^2+66xy+11x=0\end{cases}\Leftrightarrow\hept{\begin{cases}12y^2+4y=0\\66xy+11x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}12y^2=-4y\\-66xy-11x=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0;\frac{1}{3}\left(1\right)\\-66xy-11x=0\left(2\right)\end{cases}}\) TH1 : Thay y = 0 vào 2 ta đc :
\(-66x.0-11x=0\Leftrightarrow-11x=0\Leftrightarrow x=0\)
TH2 : Thay y = 1/3 vào 2 ta đc :
\(-66x.\frac{1}{3}-11x=0\Leftrightarrow\frac{-66x}{3}-\frac{33x}{3}=0\) Khử mẫu ta đc :
\(-66x-33=0\Leftrightarrow x=-\frac{1}{2}\)