K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

17 tháng 10 2020

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

22 tháng 8 2017

c)
x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d)
x+ 4 = x4 + 4x2 + 4 - 4x2
= (x2 + 2)2 - (2x)2
= (x2 + 2 - 2x)(x2 + 2 + 2x

22 tháng 8 2017

Bexiu : Có 1 sự lạc đề nhẹ ^.^

11 tháng 5 2020

\(\hept{\begin{cases}x^2y+2=y^2\\xy^2+2=x^2\end{cases}}\)

Trừ 2 vế pt ta có \(x^2y-xy^2=y^2-x^2\)

\(\Leftrightarrow xy\left(x-y\right)=\left(x-y\right)\left(x+y\right)\)

\(\Leftrightarrow\left(xy-x-y\right)\left(x-y\right)=0\Rightarrow\orbr{\begin{cases}xy-x-y=0\left(1\right)\\x=y\end{cases}}\)

Giải (1) ta có \(x\left(y-1\right)-x=0\Rightarrow\left(y-1-1\right)x=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

11 tháng 5 2020

\(\hept{\begin{cases}x^2y+2=y^2\\xy^2+2=x^2\end{cases}}\)\(< =>\hept{\begin{cases}x^2y+2=y^2\\x^2y-xy^2+2-2=y^2-x^2\end{cases}}\)

\(< =>\hept{\begin{cases}x^2y+2=y^2\\\left(x-y\right)\left(xy+x+y\right)=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x-y=0\\xy+x+y=0\end{cases}< =>\orbr{\begin{cases}x=y\\xy+x+y=0\end{cases}}}\)

\(< =>x\left(y+1\right)+y=0\)\(< =>x=y=0\)

Chắc sai r

7 tháng 1 2017

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)

Đơn giản rồi làm tiếp nhé

7 tháng 1 2017

\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)

Với x = 0 thì y = 0

Với x \(\ne\)0 thì nhân pt trên cho x ta được

\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế được

\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)

\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)

\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)

Tới đây thì đơn giản roofin làm tiếp nhé

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

21 tháng 2 2020

Với y =0 thế vào hệ => vô lí

Với y khác 0

Cộng vế với vế hai phương trình của hệ ta có:

\(x^2y^2+xy^2=y+1\)

<=> \(\left(x^2y^2-1\right)+\left(xy^2-y\right)=0\)

<=> \(\left(xy-1\right)\left(xy+1+y\right)=0\)

TH1: \(xy-1=0\)

<=> \(x=\frac{1}{y}\)

Thế vào hệ ta có:

\(1=\frac{2}{y^2}+y\)

<=> \(y^3-y^2+2=0\)

<=> \(\left(y^3+1\right)-\left(y^2-1\right)=0\)

<=> \(\left(y+1\right)\left(y^2+2y+2\right)=0\)

<=> \(\orbr{\begin{cases}y=-1\\\left(y+1\right)^2+1=0\left(loai\right)\end{cases}}\)

Với y = -1 ta có: x = - 1

TH2: xy + 1 + y = 0

<=> \(x=\frac{-1-y}{y}\) thế vào hệ ta có:

\(\left(y+1\right)^2=\frac{2\left(1+y\right)^2}{y^2}+y\)

<=> \(y^4+y^3-y^2-4y-2=0\)

<=> \(\left(y^4-y^3-y^2\right)+\left(2y^3-2y^2-2y\right)+\left(2y^2-2y-2\right)=0\)

<=> \(\left(y^2-y-1\right)\left(y^2+2y+2\right)=0\)

<=> \(\orbr{\begin{cases}y=\frac{1\pm\sqrt{5}}{2}\\\left(y+1\right)^2+1=0\left(loại\right)\end{cases}}\)

Với \(y=\frac{1-\sqrt{5}}{2}\) ta có: \(x=\frac{-1+\sqrt{5}}{2}\)

Với \(y=\frac{1+\sqrt{5}}{2}\) ta có: \(x=\frac{-1-\sqrt{5}}{2}\)

Kết luận: Hệ có 3 nghiệm:...

13 tháng 12 2018

\(x^2-y^2+x-y=5\)\(\Leftrightarrow\left(x^2-y^2\right)+\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x-y+1\right)=5\)

13 tháng 12 2018

\(x^3-x^2y-xy^2+y^3=6\)

\(\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6\)