Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt ẩn phụ nhé
\(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b=< =>\int_{2a-3b=1}^{a+b=3}< =>\int_{2.\left(3-b\right)-3b=1}^{,a=3-b}< =>\int_{b=1}^{a=2}\)
<=>\(\dfrac{1}{x+y}=2;\dfrac{1}{x-y}=1< =>\int_{x-y=1}^{x+y=2}< =>\int_{y=0,5}^{x=1,5}\)
Đặt :
\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)
Ta có hệ phương trình :
\(\left\{{}\begin{matrix}u+v=3\\2u-3v=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u+2v=6\\2u-3v=1\end{matrix}\right.\)
\(\Leftrightarrow5v=5\Leftrightarrow v=1\)
Thay \(v=1\) vào phương trình thứ nhất ta đc :
\(u+1=3\Leftrightarrow u=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=2\\\dfrac{1}{x-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\\x-y=1\end{matrix}\right.\)
\(\Leftrightarrow2y=-\dfrac{1}{2}\Rightarrow y=-\dfrac{1}{4}\)
Thay \(y=-\dfrac{1}{4}\) vào phương trình thứ 2 ta được :
\(x+\dfrac{1}{4}=1\Leftrightarrow x=\dfrac{3}{4}\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
Cộng 2 PT lại ta dc
\(\dfrac{5}{x+1}+\dfrac{y+3-2}{y+1}=-1+7\)
\(=>\dfrac{5}{x+1}+1=6\)
Giai ra tim x rồi thay vào tìm y
\(\left\{{}\begin{matrix}x^2+\left(y+\dfrac{1}{y}\right)^2=5\\x\left(y+\dfrac{1}{y}\right)=2\end{matrix}\right.\)
Đặt \(y+\dfrac{1}{y}=a\) \(\Rightarrow\left\{{}\begin{matrix}x^2+a^2=5\\x.a=2\Rightarrow a=\dfrac{2}{x}\end{matrix}\right.\)
\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\Leftrightarrow x^4-5x^2+4=0\) \(\Rightarrow\left[{}\begin{matrix}x^2=4\\x^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=\pm1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\pm1\\a=\pm2\end{matrix}\right.\)
\(a=1\Rightarrow y+\dfrac{1}{y}=1\Rightarrow y^2-y+1=0\) (vô nghiệm)
\(a=-1\Rightarrow y+\dfrac{1}{y}=-1\Rightarrow y^2+y+1=0\) (vô nghiệm)
\(a=2\Rightarrow y+\dfrac{1}{y}=2\Rightarrow y^2-2y+1=0\Rightarrow y=1\)
\(a=-2\Rightarrow y+\dfrac{1}{y}=-2\Rightarrow y^2+2y+1=0\Rightarrow y=-1\)
Vậy hệ đã cho có 2 cặp nghiệm:
\(\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+2}{x-1}-\dfrac{5y+10-10}{y+2}=9\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-1}+1-5+\dfrac{10}{y+2}=9\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{10}{y+2}=9+5-1=14-1=13\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>x-1=2/7; y+2=5/3
=>x=9/7; y=-1/3
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
Đặt x/x+1=a; y/y+1=b
Hệ sẽ là 2a+b=căn 2 và a+3b=-1
=>2a+b=căn 2 và 2a+6b=-2
=>-5b=căn 2+2 và a=-1-3b
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-\sqrt{2}-2}{5}\\a=-1-3\cdot\dfrac{-\sqrt{2}-2}{3}=-1+\sqrt{2}+2=1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{y+1}=\dfrac{-2-\sqrt{2}}{5}\\\dfrac{x}{x+1}=1+\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+1-1}{y+1}=\dfrac{-2-\sqrt{2}}{5}\\\dfrac{x+1-1}{x+1}=1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y+1}=1-\dfrac{-2-\sqrt{2}}{5}=1+\dfrac{2+\sqrt{2}}{5}=\dfrac{7+\sqrt{2}}{5}\\\dfrac{1}{x+1}=1-1-\sqrt{2}=-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7+\sqrt{2}}-1=\dfrac{5-7-\sqrt{2}}{7+\sqrt{2}}=\dfrac{-2-\sqrt{2}}{7+\sqrt{2}}\\x=-\dfrac{1}{\sqrt{2}}-1\end{matrix}\right.\)
Lời giải:
Lấy PT(1) trừ PT(2) theo vế ta thu được:
\(2(x^2-y^2)+\frac{1}{y^4}-\frac{1}{x^4}=0\)
\(\Leftrightarrow 2(x^2-y^2)+\frac{x^4-y^4}{x^4y^4}=0\)
\(\Leftrightarrow 2(x^2-y^2)+\frac{(x^2-y^2)(x^2+y^2)}{x^4y^4}=0\)
\(\Leftrightarrow (x^2-y^2)\left(2+\frac{x^2+y^2}{x^4y^4}\right)=0\)
Thấy rằng \(2+\frac{x^2y^2}{x^4y^4}\neq 0\) với mọi $x,y\neq 0$
Do đó \(x^2-y^2=0\Rightarrow x^2=y^2\Rightarrow x^4=y^4\)
Thay vào PT(1): \(2x^2+\frac{1}{x^4}=3\)
\(\Leftrightarrow 2x^6-3x^4+1=0\)
\(\Leftrightarrow 2x^4(x^2-1)-(x^4-1)=0\)
\(\Leftrightarrow 2x^4(x^2-1)-(x^2-1)(x^2+1)=0\)
\(\Leftrightarrow (x^2-1)(2x^4-x^2-1)=0\)
\(\Leftrightarrow (x^2-1)(x^2-1)(2x^2+1)=0\)
\(\Leftrightarrow (x^2-1)^2(2x^2+1)=0\Rightarrow x^2-1=0\) (dễ thấy \(2x^2+1\neq 0)\)
\(\Rightarrow x^2=1=y^2\)
\(\Rightarrow x=\pm 1; y=\pm 1\)
Vậy \((x,y)=(1,-1); (1,1); (-1,-1), (-1,1)\)
(1) <=> x=-1+y (3)
từ (2) và (3) suy ra:
\(\dfrac{2}{y-1}+\dfrac{3}{y}=2\)
<=>\(\dfrac{2y}{y\left(y-1\right)}+\dfrac{3\left(y-1\right)}{y\left(y-1\right)}=2\)
<=> \(\dfrac{2y+3y-3}{y\left(y-1\right)}=2\)
<=>\(\dfrac{5y-3}{y\left(y-1\right)}=2\)
<=> 5y-3=2y(y-1)
<=> 5y-3=\(2y^2-2y\)
<=>\(2y^2-7y-3=0\)
rồi bạn giải như bình thường là ra
ĐKXĐ:x khác 0 y khác 0
\(\left\{{}\begin{matrix}x-y=-1\\\dfrac{2}{x}+\dfrac{3}{y}=2\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=x+1\left(1\right)\\2y+3x=2xy\left(2\right)\end{matrix}\right.\)
Thay 1 vào 2 ta có:
2(x+1)+3x=2x(x+1)
<=>5x+2=2x2+2x
<=>2x2-3x+2=0
<=>2x2-3x+\(\dfrac{9}{8}\)+\(\dfrac{7}{8}\)=0
<=>2(x-\(\dfrac{3}{4}\))2+\(\dfrac{7}{8}\)=0(vô lí do \(2\left(x-\dfrac{3}{4}\right)^2\ge0\forall x\))
Vậy hệ vô nghiệm