Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ê cu bài phần a nè
(2)<=>X2(1-X3)+y2(1-y3)=0 (3)
từ (1) => 1-x3=y3;1-y3=x3
thay vào (3)ta được :x2.y3+y2.x3=0
<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)
Sửa lại bài bạn ở trên:
Ta có: x4 + y4 + z4 \(\ge\)(xy)2 + (yz)2 + (zx)2
\(\ge\)xzy2 + xyz2 + yzx2 = xyz(x + y + z) = xyz
Dấu = xảy ra khi x = y = z
Kết hợp với x + y + z = 1
\(\Rightarrow x=y=z=\frac{1}{3}\)
đề => \(x^4+y^4+z^4=xyz\left(x+y+z\right)\left(1\right)\)
ta có bđt \(a^2+b^2+c^2\ge ab+bc+ac\)
áp dụng ta được \(\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge xy.yz+xy.zx+yz.xz=xyz\left(x+y+z\right)\)
dấu "=" xảy ra <=> x=y=z
mà x+y+z=1
=>x=y=z=1/3
(nếu cần cm bđt phụ thì nói mình nha)
Ta có :
\(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
\(\Rightarrow\)\(x^4+y^4+z^4=xyz.\left(x+y+z\right)\)
Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\), dấu "=" xảy ra khi \(a=b=c\)TA CÓ :
\(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2=\ge xy.yz+yz.zx+zx.xy\)\(=xyz.\left(x+y+z\right)\)
\(\Rightarrow\)\(x=y=z\)
Mà \(x+y+z=1\)\(\Rightarrow\)\(x=y=z=\frac{1}{3}\)
Vậy hệ phương trình có nghiệm \(\left(x;y;z\right)=\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right)\)
\(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
\(\Rightarrow\)\(x^4+y^4+z^4=xyz.\left(x+y+z\right)\)
Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\)dấu "=" xảy ra khi \(a=b=c\)ta có :
\(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2\ge xy.yz+yz.zx+zx.xy=xyz.\left(x+y+z\right)\)\(\Rightarrow\)\(x=y=z\)
Mà \(x+y+z=1\)\(\Rightarrow\)\(x=y=z=\frac{1}{3}\)
Vậy hệ phương trình có nguyệm \(\left(x;y;z\right)=\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right)\)
( mình mới lớp 7 à nên có làm sai thì thông cảm giùm nha )
ta có \(x^4+y^4\ge2x^2y^2\); \(y^4+z^4\ge2y^2z^2\);\(z^4+x^4\ge2z^2x^2\)
==> \(2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
<=> \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
mặt khác \(x^2y^2+y^2z^2\ge2xy^2z\)
\(y^2z^2+z^2x^2\ge2xyz^2\)
\(z^2x^2+x^2y^2\ge2x^2yz\)
==> \(2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge2xyz\left(x+y+z\right)=2xyz\)( vì x+y+z=1)
==> \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\)
dấu ''='' xảy ra khi x=y=z mà x+y+z=1 ==> x=y=z=1/3
vậy \(\left(x;y;z\right)=\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right)\)
(0;0;1)
đoán vậy
khó quá ( mới măm xongg đã thế này thì sống làm sao?)
ừ An cũng nhẩm được nghiệm là vậy rồi =))
mới ăn xong mà bài vầy là bình thường hoy nha =))
hôm sau đúng vào giao thừa cho thêm vài bài khó hơn thế này nhiều he he :D