\(3x-y\left(1+5x\right)=0\)

\(x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

\(\Leftrightarrow\left\{{}\begin{matrix}3x-y-5xy=0\\x-5xy+y=0\left(1\right)\end{matrix}\right.\)

\(\Rightarrow3x-y-5xy=x-5xy+y\)

\(\Leftrightarrow2x=2y\)

\(\Leftrightarrow x=y\)

Thay vào (1):

\(2x-5x^2=0\)

\(\Leftrightarrow x\left(5x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=\frac{2}{5}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;0\right);\left(\frac{2}{5};\frac{2}{5}\right)\)

3 tháng 2 2019

a)\(\Leftrightarrow\left\{{}\begin{matrix}12x+16y=-1\\3x+4y=-2\end{matrix}\right.\)(vô nghiệm)

Vậy hpt vô nghiệm.

b)\(\left\{{}\begin{matrix}\dfrac{5x-1}{5y-1}=\dfrac{1}{2}\\5x-7y=-9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}10x-2=10y-1\\5x-7y=-9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}10x-10y=1\\5x-7y=-9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{97}{20}\\y=\dfrac{19}{4}\end{matrix}\right.\)

Vậy hpt có tập nghiệm là \(\left(\dfrac{97}{20};\dfrac{19}{4}\right)\).

20 tháng 12 2018

a,\(\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=18\left(1\right)\\10x-6y=10\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) => 7x=28
\(\Leftrightarrow\) x=4
thay x vào (1) ta có -4+2y=6
=> 2y=10
=>y=5
Vậy nghiệm của phương trình (x;y)=(4;5)

10 tháng 12 2022

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y=2\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\5y=15\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

3 tháng 4 2017

a)

Từ phương trình (1) ⇔ y = 3x - 5 (3)

Thế (3) vào phương trình (2): 5x + 2(3x - 5) = 23

⇔ 5x + 6x - 10 = 23 ⇔ 11x = 33 ⇔x = 3

Từ đó y = 3 . 3 - 5 = 4.

Vậy hệ có nghiệm (x; y) = (3; 4).

b)

Từ phương trình (2) ⇔ y = 3x + 8 (3)

Thế (3) vào (1): 3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39

⇔ x = -3

Từ đó y = 2(-3) + 8 = 2.

Vậy hệ có nghiệm (x; y) = (-3; 2).

c)


Phương trình (1) ⇔ x = y (3)

Thế (3) vào (2): y + y = 10 ⇔ y = 10

⇔ y = 6.

Từ đó x = . 6 = 4.

Vậy nghiệm của hệ là (x; y) = (4; 6).

3 tháng 4 2017

a, ta có \(\left\{{}\begin{matrix}3x-y=5\\5x+2y=23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-5+3x\\5x+2\left(-5+3x\right)=23\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3.3-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

vậy hệ PT đã cho có 1 nghiệm duy nhất (x;y)=(3;4)

b, ta có \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=8+2x\\3x+5\left(8+2x\right)=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=8+2x\\13x=-39\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=8+2.\left(-3\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

vậy hệ PT đã cho có 1 nghiệm duy nhất (x;y)=(-3;2)

c,ta có \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10-y\\3\left(10-y\right)=2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10-y\\-5y=-30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=10-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

vậy hệ PT đã cho có 1 nghiệm duy nhất là (x;y)=(4;6)

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

a) Nếu $m=1$ thì hpt \(\Leftrightarrow \left\{\begin{matrix} 2(x+y)+|x|=4(1)\\ 5(x+y)-2|x|=1(2)\end{matrix}\right.\)

Lấy \((1).5-(2).2\) thu được:

\(9|x|=18\Rightarrow |x|=2\Rightarrow x=\pm 2\)

\(x+y=\frac{4-|x|}{2}=\frac{4-2}{2}=1\)

Với \(x=2\Rightarrow y=1-x=-1\)

Với \(x=-2\Rightarrow y=1-x=3\)

Vậy hpt có nghiệm \((x,y)=(2; -1); (-2;3)\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18