K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 3 2018

Lời giải:

ĐKXĐ: \(x,y\in [0;6]\)

Ta lấy phương trình thứ nhất trừ đi phương trình thứ 2:

\(\sqrt{x}+\sqrt{6-y}-(\sqrt{y}+\sqrt{6-x})=0\)

\(\Leftrightarrow (\sqrt{x}-\sqrt{y})+(\sqrt{6-y}-\sqrt{6-x})=0\)

\(\Leftrightarrow \frac{x-y}{\sqrt{x}+\sqrt{y}}+\frac{6-y-(6-x)}{\sqrt{6-y}+\sqrt{6-x}}=0\)

\(\Leftrightarrow (x-y)\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{6-x}+\sqrt{6-y}}\right)=0\)

Hiển nhiên biểu thức trong ngoặc lớn luôn lớn hơn 0

Do đó \(x-y=0\Leftrightarrow x=y\)

Thay vào pt ban đầu: \(\sqrt{x}+\sqrt{6-x}=2\sqrt{3}\)

Bình phương hai vế:

\(x+6-x+2\sqrt{x(6-x)}=12\)

\(\Leftrightarrow \sqrt{x(6-x)}=3\Rightarrow x(6-x)=9\)

\(\Leftrightarrow (x-3)^2=0\Leftrightarrow x=3\)

Thử lại thấy tm

Vậy \((x,y)=(3,3)\)

Ta có: \(\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\x+\left(\sqrt{3}+\sqrt{2}\right)y=\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0y=-2\sqrt{2}+2\sqrt{3}\left(vôlý\right)\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)

Vậy: Hệ phương trình vô nghiệm

10 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Phần a)

\(\left\{\begin{matrix} x\sqrt{y}+y\sqrt{x}=30\\ x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} \sqrt{xy}(\sqrt{x}+\sqrt{y})=30\\ (\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)

Khi đó hpt trở thành:

Đặt \((\sqrt{xy}; \sqrt{x}+\sqrt{y})=(a,b)\)

HPT trở thành:

\(\left\{\begin{matrix} ab=30\\ b(b^2-3a)=35\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} ab=30\\ b^3=125\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=6\\ b=5\end{matrix}\right.\)

Vậy \(\sqrt{xy}=6; \sqrt{x}+\sqrt{y}=5\). Theo định lý Viete đảo thì \(\sqrt{x}; \sqrt{y}\) là nghiệm của pt:

\(T^2-5T+6=0\Rightarrow (\sqrt{x}; \sqrt{y})=(2,3)\) và hoán vị

\(\Rightarrow (x,y)=(4,9)\) và hoán vị

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} x+y+xy=2+3\sqrt{2}\\ (x+y)^2-2xy=6\end{matrix}\right.\)

Đặt \((x+y,xy)=(a,b).\) Khi đó hpt trở thành:

\(\left\{\begin{matrix} a+b=2+3\sqrt{2}\\ a^2-2b=6\end{matrix}\right.\Rightarrow a^2-2(2+3\sqrt{2}-a)=6\)

\(\Leftrightarrow a^2+2a=10+6\sqrt{2}\)

\(\Rightarrow (a+1)^2=11+6\sqrt{2}=(3+\sqrt{2})^2\)

\(\Rightarrow \left[\begin{matrix} a=2+\sqrt{2}\\ a=-4-\sqrt{2}\end{matrix}\right.\)\(\Rightarrow \left[\begin{matrix} b=2\sqrt{2}\\ b=6+4\sqrt{2}\end{matrix}\right.\)

Với \((a,b)=(2+\sqrt{2}; 2\sqrt{2})\) theo đl Viete đảo suy ra \((x,y)=(2,\sqrt{2})\) và hoán vị.

Với \((a,b)=(-4-\sqrt{2}, 6+4\sqrt{2})\Rightarrow \) theo đl Viete đảo thì (x,y) là nghiệm của pt: \(T^2+(4+\sqrt{2})T+6+4\sqrt{2}=0\), pt vô nghiệm nên không tồn tại $x,y$

Vậy \((x,y)=(2,\sqrt{2})\) và hoán vị.

18 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(1-\sqrt{3}\right)x+2y=1-\sqrt{3}\\\left(1-\sqrt{3}\right)x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\sqrt{3}\\x=1+\left(1+\sqrt{3}\right)\cdot\left(-\sqrt{3}\right)=-2-\sqrt{3}\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}-x-\sqrt{2}y=\sqrt{3}\\x+\sqrt{2}y=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\in R\\x=-\sqrt{3}-y\sqrt{2}\end{matrix}\right.\)

20 tháng 12 2018

a,\(\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=18\left(1\right)\\10x-6y=10\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) => 7x=28
\(\Leftrightarrow\) x=4
thay x vào (1) ta có -4+2y=6
=> 2y=10
=>y=5
Vậy nghiệm của phương trình (x;y)=(4;5)

10 tháng 12 2022

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y=2\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\5y=15\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((

1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

29 tháng 4 2023

4. Đk: \(x,y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)

20 tháng 11 2019
https://i.imgur.com/Xdu2t93.jpg
8 tháng 11 2019

sex