Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Condition}:x,y\ge0\)
\(\hept{\begin{cases}x^2+2x=4-\sqrt{y}\left(M_1\right)\\y^2+2y=4-\sqrt{x}\left(M_2\right)\end{cases}}\)
\(\left(M_1\right)-\left(M_2\right)\Leftrightarrow\left(x^2-y^2\right)+2\left(x-y\right)+\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+2\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)+2\left(\sqrt{x}+\sqrt{y}\right)+1=0\left(M_3\right)\end{cases}}\)
x=0 khong phai nghiem PT\(\Rightarrow M_3\)(fail)
Thay x=y vao
:D
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
Điều kiện :\(\begin{cases}2x-y-1\ge0\\x+2y\ge0\\x>0\\y\ge-\frac{1}{3}\end{cases}\)
Từ (1) \(\Leftrightarrow\sqrt{2x-y-1}-\sqrt{x}+\sqrt{3y+1}-\sqrt{x+2y}=0\)
\(\Leftrightarrow\frac{x-y-1}{\sqrt{2x-y-1}+\sqrt{x}}-\frac{x-y-1}{\sqrt{3y+1}+\sqrt{x-2y}}=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(\frac{1}{\sqrt{2x-y-1}+\sqrt{x}}-\frac{1}{\sqrt{3y+1}+\sqrt{x+2y}}\right)\)
\(\Leftrightarrow\begin{cases}y=x-1\left(3\right)\\\sqrt{2x-y-1}+\sqrt{x}=\sqrt{3y+1}+\sqrt{x+2y}\left(4\right)\end{cases}\)
Từ (4) \(\Leftrightarrow\sqrt{2x-y-1}+\sqrt{x}=\sqrt{3y+1}+\sqrt{x+2y}\)
\(\Leftrightarrow\sqrt{x}=\sqrt{3y+1}\)
\(\Leftrightarrow y=\frac{x-1}{3}\left(5\right)\)
Từ (3) và (2) ta có :
\(\left(x-1\right)^2\left(x+2\right)=2\left(x-1\right)^3-\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-5\right)=0\)
\(\Leftrightarrow\begin{cases}x=1\\x=5\end{cases}\)
x=1 => y=0
x=5 => y=4
Từ (5) và (2) ta có :
\(\left(x-1\right)^2\left(x+2\right)=\frac{2}{27}\left(x-1\right)^3-\frac{1}{9}\left(x-1\right)^2\)\(\Leftrightarrow\left(x-1\right)^2\left(25x+59\right)=0\)
\(\Leftrightarrow x=1\) do x>0
Vậy hệ đã cho có nghiệm : \(\left(x;y\right)=\left(1;0\right);\left(x;y\right)=\left(5;4\right)\)
\(\begin{cases}y^2-x\sqrt{\frac{y^2+2}{x}}=2x-2\left(1\right)\\\sqrt{y^2+1}+\sqrt[3]{2x-1}=1\left(2\right)\end{cases}\)
Điều kiện \(x>0\)
Chia cả 2 vế của phương trình (1) cho \(x\) ta được :
\(\frac{y^2+2}{x}-\sqrt{\frac{y^2+2}{x}}-2=0\)
\(\Leftrightarrow\begin{cases}\sqrt{\frac{y^2+2}{x}=-1}\\\sqrt{\frac{y^2+2}{x}=2}\end{cases}\) \(\Leftrightarrow\frac{y^2+2}{x}=4\)
\(\Leftrightarrow y^2=4x+2\)
Thế vào phương trình (2) ta được : \(\sqrt{4x-1}+\sqrt[3]{2x-1}=1\)
Đặt \(\sqrt{4x-1}=u,\left(u\ge0\right),\sqrt[3]{2x-1}=v\) ta có hệ : \(\begin{cases}u+v=1\\u^2-2v^3=1\end{cases}\)
Giải hệ ta được \(u=1;v=0\Rightarrow x=\frac{1}{2};y=0\)
Vậy nghiệm của hệ phương trình là : \(x=\frac{1}{2};y=0\)
Điều kiện \(x\ge0;y\ge0\)
Dễ thấy nếu x = 0; y = 0 và ngược lại nên hệ có nghiệm (x;y) = (0;0)
Ta xét x > 0 và y > 0. Xét hàm số :
\(f\left(t\right)=\frac{t^2+\sqrt{t}}{2};t>0\)
Ta thấy \(f'\left(t\right)=t+\frac{1}{4\sqrt{t}}>0\) với mọi \(t>0\) nên đây là hàm đồng biến trên \(\left(0;+\infty\right)\)
Hệ đã cho được viết lại thành : \(\begin{cases}x=f\left(y\right)\\y=f\left(x\right)\end{cases}\)
Nếu x > y thì \(f\left(x\right)>f\left(y\right)\) suy ra y>x vô lý.
Tương tự, nếu x < y thì cũng vô lí. Vậy x = y, thay vào (*) được
\(x^2+\sqrt{x}=2x\Leftrightarrow x\sqrt{x}+1=2\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(x+\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{3-\sqrt{5}}{2}\end{array}\right.\)
Vậy hệ phương trình đã cho có 3 nghiệm là :
\(\left(0;0\right);\left(1;1\right);\left(\frac{3-\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right)\)