K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

NX: x = y = 0 là 1 nghiệm của hpt 

Với x ; y khác 0 thì chia cả 2 vế của hệ đã cho cho xy ta được

\(\hept{\begin{cases}y-\frac{2y}{x}+\frac{3x}{y}=0\\\frac{y}{x}+x+\frac{2}{y}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y-\frac{2y}{x}=-\frac{3x}{y}\\x+\frac{2}{y}=-\frac{y}{x}\end{cases}}\)

 Nhân 2 vế của hệ trên lại ta đc

\(\left(y-\frac{2y}{x}\right)\left(x+\frac{2}{y}\right)=3\)

\(\Leftrightarrow xy-\frac{4}{xy}=3\)

\(\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-1\end{cases}}\)

Dễ rồi nha

25 tháng 6 2020

giải hpt: \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)

Cộng hai vế lại với nhau ta có: 

\(4x^2-4xy^2+y^4+x^2-4x+4=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-y^2=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y^2=4\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=2;y=2\left(tm\right)\\x=2;y=-2\end{cases}}\)

Thay x,y vào pt và tính

=> x=2 và y=2 thỏa mãn 

=>(x;y)=(2;2) (t/m)

25 tháng 6 2020

@Linh: Làm nhầm rồi 

HPT\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)

Cộng vế với vế của hai phương trình, ta được:

\(HPT\Leftrightarrow5x^2-4xy^2+y^2-4x+4=0\)

\(\Leftrightarrow\left(4x^2-4xy^2+y^2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy \(\left(x;y\right)=\left(2;4\right)\)
 

26 tháng 6 2017

<=> \(\hept{\begin{cases}y=2x-1\\x^2+x\left(2x-1\right)+2\left(2x-1\right)^2=4\end{cases}}\)

từ phương trình 2 <=> \(x^2+2x^2-x+2\left(4x^2-4x+1\right)=4\)

<=> 11x^2-9x-2=0

<=> (x-1)(11x+2) = 0

đoạn sau bạn tự giải nhé

28 tháng 9 2018

\(\hept{\begin{cases}x+2y=3\\x^2+xy+2y^2+6y-10=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-2y\left(1\right)\\\left(3-2y\right)^2+\left(3-2y\right)y+2y^2+6y-10=0\left(2\right)\end{cases}}\)

\(\Leftrightarrow4y^2-3y+1=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{4}\end{cases}}\)

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)