Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{1}{xy}=6\end{matrix}\right.\left(x,y\ne0\right)\)\(\Leftrightarrow\left(I\right)\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{1}{x}\cdot\dfrac{1}{y}=6\end{matrix}\right.\)
Đặt \(\dfrac{1}{x}=a,\dfrac{1}{y}=b\left(a,b>0\right)\)
Hệ (I) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\ab=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b\left(5-b\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\-\left(b^2-5b\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^2-5b+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(b-3\right)\left(b-2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=5-b\\b-3=0\end{matrix}\right.\\\left\{{}\begin{matrix}a=5-b\\b-2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=5-b\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=5-b\\b=2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)
Trả lại biến cũ
\(\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=2\\\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0,5\\y=\dfrac{1}{3}\end{matrix}\right.\left(TM\right)\)và ngược lại
Vậy HPT có các cặp nghiệm là \(\left(0,5;\dfrac{1}{3}\right);\left(\dfrac{1}{3};0,5\right)\)
P/S: Bạn kiểm tra kết quả lại giúp mình nhé
=>12/(x+y-1)-15/(2x-y+3)=15/2 và 12/(x+y-1)-4/(2x-y+3)=28/5
=>x+y-1=22/9; 2x-y+3=-110/19
=>x+y=31/9; 2x-y=-167/19
=>x=-914/513; y=2681/513
\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)
The vao roi tinh la xong
\(\left\{{}\begin{matrix}3x+y=3\\3x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=0\\3x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x+y=3\\3x-y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+y+3x-y=3-3\\3x-y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x=0\\3x-y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\3.0-y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
a/ Theo Viet đảo, x và y là nghiệm của pt:
\(t^2-5t+5=0\Rightarrow t=\frac{5\pm\sqrt{5}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5+\sqrt{5}}{2}\\y=\frac{5-\sqrt{5}}{2}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=\frac{5-\sqrt{5}}{2}\\y=\frac{5+\sqrt{5}}{2}\end{matrix}\right.\)
b/ Đặt \(Y=-y\Rightarrow\left\{{}\begin{matrix}x+Y=1\\xY=-6\end{matrix}\right.\)
Theo Viet đảo, x và Y là nghiệm của: \(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\Y=-2\Rightarrow y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-2\\Y=3\Rightarrow y=-3\end{matrix}\right.\)
ý 2
Do cắt trục tung tại điểm có tung độ bằng -4--->b=-4(1)
Cắt trục hoành tại điểm có hoành độ bằng 2
-->x=2,y=0
-->2a+b=0 hay 2a=-b(2)
Thay (1) vào (2) ta dc
2x=4
-->x=2
Vậy a=2,b=-4
\(\left\{{}\begin{matrix}x^3+y^3=^{ }1\left(1\right)\\x^5+y^5=x^2+y^2\left(2\right)\end{matrix}\right.\)
(2)\(\Leftrightarrow x^5-x^2+y^5-y^2=0\)
\(\Leftrightarrow x^2\left(x^3-1\right)+y^2\left(y^3-1\right)=0\)
\(\Leftrightarrow x^2\left(-y\right)^3+y^2\left(-x\right)^3=0\)
\(\Leftrightarrow x^2y^3+y^2x^3=0\)
\(\Leftrightarrow x^2y^2\left(x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\y=0\Rightarrow x=1\\x=-y\left(loại\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=-6\\\dfrac{5\left(x+3y\right)-3\left(y-2\right)}{15}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\5x+15y-3y+6=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\12y=9-5x=9+5\cdot\dfrac{6}{7}=9+\dfrac{30}{7}=\dfrac{93}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\y=\dfrac{93}{7\cdot12}=\dfrac{93}{84}=\dfrac{31}{28}\end{matrix}\right.\)