Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình trình bày cho dễ hiểu nha
\(sina-\sqrt{3}cosa\)
\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)
\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)
Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)
\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)
Vậy Min=-2
Max=2
\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))
\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)
Thay 1 vào x, ta có
f(x) =14+12+a=0
2+a=0 suy ra a=-2
Lời giải:
ĐKXĐ: $x\geq \frac{3}{2}$
BPT $\Leftrightarrow x+7\geq 2x+1+4\sqrt{2x-3}$
$\Leftrightarrow 6-x\geq 4\sqrt{2x-3}$
\(\Leftrightarrow \left\{\begin{matrix} 6-x\geq 0\\ (6-x)^2\geq 16(2x-3)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x^2-44x+84\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ (x-42)(x-2)\geq 0\end{matrix}\right.\Leftrightarrow x\leq 2\)
Kết hợp đkxđ suy ra $\frac{3}{2}\leq x\leq 2$
Không hiểu sao làm xong rồi nhưng không hiện lời giải đầy đủ nên mình chụp lại.