Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)
\(x^2+y^2-xy-x-y< \frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y< 1\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)< 3\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2< 3\)
Đến đây dễ rồi
Cách lớp 8 nhé!
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
a) \(\left(x+5\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+5>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-5\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x>2\end{cases}}\) (loại)
Vậy -5 < x < 2
b) \(\left(x+2\right)\left(x-\frac{3}{5}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-\frac{3}{5}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x-\frac{3}{5}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x>\frac{3}{5}\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x< \frac{3}{5}\end{cases}}\)
Vậy x > 3/5 hoặc x < -2
a ) ( x + 5 )( x - 2 ) < 0
=> x + 5 duong va x - 2 am hoac x + 5 am va x - 2 duong
Neu x + 5 duong va x - 2 am thi
-5 < x < 2
=> x \(\in\left\{1;0;-1;-2;-3;-4\right\}\)
Neu x + 5 am va x - 2 duong thi :
x < -5 va x > 2
Vi 2 dieu kien tren mau thuan vs nhau nen x\(\varnothing\)trong truong hop nay
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(100x+\left(1+2+3+4+...+100\right)=5750\)
Áp dụng công thức tính dãy số ta có
\(\left(100-1\right):1+1.\left(100+1\right):2=100.101:2=5050\)
\(\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=700\)
\(\Rightarrow x=7\)
( x+x+x+....+x)+(1+2+3+4+.....+ 100)=5750
=(x.100)+(101.1):100:2=5750
=> (x.100)+5050=5750
=>x.100=700
=>x=7