K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)

\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)

30 tháng 1 2019

\(\text{Giải}\)

\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)

https://olm.vn/hoi-dap/detail/212443421285.html

23 tháng 2 2020

Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)

=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)

=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)

=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

=> \(x^2-1=0\)

=> \(x^2=1\)

=> \(x=\pm1\)

Vậy phương trình có 2 nghiệm là x = 1, x = -1 .

24 tháng 2 2020

Thanks bn

16 tháng 11 2015

dễ mà bn,cộng 1 vào mỗi biểu thức và trừ vế 2 là xong

13 tháng 11 2020

\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)

\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)

      \(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)

Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)

Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)

Vậy \(x=-2009\)

Bài làm

\(\frac{x+2}{2005}+\frac{x+3}{2004}+\frac{x+4}{2003}+3=0\)

\(\Leftrightarrow\left(\frac{x+2}{2005}+1\right)+\left(\frac{x+3}{2004}+1\right)+\left(\frac{x+4}{2003}+1\right)=0\)

\(\Leftrightarrow\left(\frac{x+2+2005}{2005}\right)+\left(\frac{x+3+2004}{2004}\right)+\left(\frac{x+4+2003}{2003}\right)=0\)

\(\Leftrightarrow\frac{x+2007}{2005}+\frac{x+2007}{2004}+\frac{x+2007}{2003}=0\)

\(\Leftrightarrow\left(x+2007\right).\frac{1}{2005}+\left(x+2007\right).\frac{1}{2004}+\left(x+2007\right).\frac{1}{2003}=0\)

\(\Leftrightarrow\left(x+2007\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2007=\frac{0}{\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}}\)

\(\Leftrightarrow x+2007=0\)

\(\Leftrightarrow x=-2007\)

Vậy phương trình trên có tập nghiệm S = { -2007 }

# Học tốt #

2 tháng 1 2020

\(\frac{x+2}{2005}+\frac{x+3}{2004}+\frac{x+4}{2003}+3=0\)

\(\Leftrightarrow\left(\frac{x+2}{2005}+1\right)+\left(\frac{x+3}{2004}+1\right)+\left(\frac{x+4}{2003}+1\right)=0\)

\(\Leftrightarrow\frac{x+2007}{2005}+\frac{x+2007}{2004}+\frac{x+2007}{2003}=0\)

\(\Leftrightarrow\left(x+2007\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)(1)

Vì \(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}>0\)(2)

Từ (1), (2) \(\Rightarrow x+2017=0\)\(\Leftrightarrow x=-2017\)

Vậy \(x=-2017\)

6 tháng 7 2019

a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

b) Sửa đề :

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow x=300\)

c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)

\(\Leftrightarrow x=2004\)

Vậy....

31 tháng 5 2017

câu 2 :

 \(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)

\(\Rightarrow x+2009=0\)

\(\Rightarrow x=-2009\)

14 tháng 1 2017

a)VP lẻ => VT lẻ =>x2-y2=2k+1 (k\(\in\)Z) (số lẻ)

\(\Rightarrow10y+9=\left(2k+1\right)^2\Rightarrow y=\frac{2\left(k+2\right)\left(k-1\right)}{5}\in Z^+\)

\(\Rightarrow\orbr{\begin{cases}\left(k+2\right)⋮5\Rightarrow k=5t-2\Rightarrow y=2t\left(5t-3\right)\left(1\right)\\\left(k-1\right)⋮5\Rightarrow k=5t+1\Rightarrow y=2t\left(5t+3\right)\left(2\right)\end{cases}}\left(t\in Z^+\right)\)

  • Xét \(\left(1\right)\Rightarrow x^2=\left(10t^2-6t\right)^2+10t-3\)

Mà \(\hept{\begin{cases}\left(10t^2-6t\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t+1\right)^2\left(\text{khi}\text{ t }\ge1\right)\\\left(10t^2-6t-1\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t\right)^2\left(\text{khi t}\le-1\right)\\\left(10t^2-6t\right)^2+10t-3=-3< 0\left(\text{khi t}=0\right)\end{cases}}\)

Suy ra pt vô nghiệm

  • Xét (2)\(\Rightarrow x^2=\left(10t^2+6t\right)^2+10t+3\)

Mà \(\left(10t^2+6t\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t+1\right)^2\left(\text{khi t}\ge1\right)\) (*)

\(\left(10t^2+6t-1\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t\right)^2\left(\text{khi t}< -1\right)\)(*)

\(\left(10t^2+6t\right)^2+10t+3=3^2\left(\text{khi t}=-1\right)\)(*)

\(1^2< \left(10t^2+6t\right)^2+10t+3=3< 2^2\left(\text{khi t}=0\right)\)(*)

Suy ra \(t=-1;y=4;x=\pm3\) (thỏa mãn)

Vậy....

P/s:Ngoặc nhọn 4 dòng có dấu (*) vào

14 tháng 1 2017

Xin lỗi bạn mình chưa học lớp 8

Trông đề bài khó quá

Mình nghiệp dư lắm