Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=1/21 + 1/22 + 1/23 + ... + 1/60
A= (1/21 + 1/22 + ... + 1/40) + (1/41 + 1/42 + ... + 1/60)
A < 1/20 * 20 + 1/40 * 20 = 1 + 1/2 = 3/2
Lại có: A = (1/21 + 1/22 + ... +1/40) + (1/41+ 1/42 + ... +1/60)
A > 1/40*20 + 1/60 * 20 = 1/2 + 1/3 = 5/6 > 11/15
==> 11/15 < 1/21 + 1/22 + ... + 1/60 < 3/2
Ta có: A=1/21 + 1/22 + 1/23 + ... + 1/60
A= (1/21 + 1/22 + ... + 1/40) + (1/41 + 1/42 + ... + 1/60)
A < 1/20 * 20 + 1/40 * 20 = 1 + 1/2 = 3/2
Lại có: A = (1/21 + 1/22 + ... +1/40) + (1/41+ 1/42 + ... +1/60)
A > 1/40*20 + 1/60 * 20 = 1/2 + 1/3 = 5/6 > 11/15
==> 11/15 < 1/21 + 1/22 + ... + 1/60 < 3/2
Ta có :
\(\frac{2-2a}{6-8b}=\frac{2\left(1-a\right)}{2\left(3-4b\right)}=\frac{1-a}{3-4b}\)
\(\frac{3-3a}{9-12b}=\frac{3\left(1-a\right)}{3\left(3-4b\right)}=\frac{1-a}{3-4b}\)
\(\Rightarrow\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\) (đpcm)
Ta có :
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}.5\)
\(\Rightarrow S< 1,5\left(1\right)\)
Lại có :
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}.5\)
\(\Rightarrow S>1\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow1< S< 1,5\)
\(\Rightarrow S\)ko phải là STN
1: C=4a+2a+10b-b
=6a+9b
=3(2a+3b)
=3*12=36
D=21a+9b-6a-4b
=15a+5b
=5(3a+b)
=5*18=90
B=5a+7a-4b-8b
=12a-12b
=12(a-b)
=12*8=96
4:
Gọi hai số cần tìm là a,b
Theo đề, ta có hệ phương trình:
a+b=38570 và a=3b+922
=>a=29158 và b=9412
1: C=4a+2a+10b-b
=6a+9b
=3(2a+3b)
=3*12=36
D=21a+9b-6a-4b
=15a+5b
=5(3a+b)
=5*18=90
B=5a+7a-4b-8b
=12a-12b
=12(a-b)
=12*8=96