K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

giải được bài 1

\(x^4+y^4+z^4=\dfrac{x^4+y^4}{2}+\dfrac{y^4+z^4}{2}+\dfrac{x^4+z^4}{2}\)

\(\ge x^2y^2+y^2z^2+x^2z^2=\dfrac{x^2y^2+y^2z^2}{2}+\dfrac{y^2z^2+x^2z^2}{2}+\dfrac{x^2y^2+x^2z^2}{2}\)

\(\ge xy^2z+xyz^2+x^2yz=xyz\left(x+y+z\right)=xyz\)

\(\Rightarrow x^4+y^4+z^4\ge xyz\)

Dấu " =" xảy ra \(\Leftrightarrow x=y=z\)

Thay vào PT (1) \(\Rightarrow x=y=z=\dfrac{1}{3}\)

6 tháng 9 2019

Có: $x^4+y^4\geq 2x^2y^2\Rightarrow x^4+y^4+z^4\geq x^2y^2+y^2z^2+z^2x^2$

Lại có: $x^2y^2+y^2z^2\geq 2xzy^2\Rightarrow x^2y^2+y^2z^2+z^2x^2\geq xyz(x+y+z)=xyz$

Vậy $\Rightarrow x^4+y^4+z^4\geq xyz$

Dấu = có khi: $x=y=z=\dfrac{1}{3}$

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

22 tháng 1 2018

1.\(\left\{{}\begin{matrix}x^2+2xy-2x-y=0\\x^4-4\left(x+y-1\right)x^2+y^2+2xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+y\right)\left(x-1\right)=0\\x^4-4\left(x+y-1\right)x^2+y^2+2xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\1^4-4\left(1+y-1\right)1^2+y^2+2.1.y=0\end{matrix}\right.\)(1)

hoặc \(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^4-4\left(x-2x-1\right)x^2+\left(-2x\right)^2+2x.\left(-2x\right)=0\end{matrix}\right.\)(2)

(1)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\1-4y+y^2+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y^2-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

(2)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^4-4\left(-x-1\right)x^2+4x^2-4x^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^2\left(x^2+4x+4\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^2\left(x+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)

Vậy nghiệm của hệ pt là (1;1),(0;0),(-2;4)

2. \(x^4-x^3+1-y^2=0\)

\(\Leftrightarrow x^3\left(x-1\right)+\left(1-y\right)\left(1+y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3\left(x-1\right)=0\\\left(1-y\right)\left(1+y\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)(tm)hoặc\(\left\{{}\begin{matrix}x=1\\y=\pm1\end{matrix}\right.\)(tm)

Vậy nghiệm nguyên cuar pt là (0;1),(0;-1),(1;1),(1;-1)

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Câu 1:

\(\left\{\begin{matrix} x^2+2xy-2x-y=0(1)\\ x^4-4(x+y-1)x^2+y^2+2xy=0(2)\end{matrix}\right.\)

Bình phương (1)

\((x^2+2xy-2x-y)^2=0\)

\(\Leftrightarrow (x^2+2xy)^2+(2x+y)^2-2(x^2+2xy)(2x+y)=0(3)\)

Lấy \((3)-(2)\) thu được:

\(4x^3y+4x^2y^2-6x^2y-4xy^2+2xy=0\)

\(\Leftrightarrow 2xy[2x^2+2xy-3x-2y+1]=0\)

\(\Leftrightarrow 2xy[2x(x-1)+2y(x-1)-(x-1)]=0\)

\(\Leftrightarrow 2xy(2x+2y-1)(x-1)=0\)

Do đó xét các TH sau:

TH1: \(x=0\) thay vào (1) suy ra \(y=0\)

TH2: \(y=0\Rightarrow x^2-2x=0\Leftrightarrow x=0;2\)

TH3: \(x=1\). Thay vào (1) suy ra \(y=1\). Thử lại thấy đúng.

TH4: \(2x+2y-1=0\)

\((1)\Rightarrow (x+y-1)^2=y^2-y+1\)

\(\Leftrightarrow y^2-y+1=(\frac{1}{2}-1)^2=\frac{1}{4}\)

\(\Leftrightarrow y^2-y+\frac{3}{4}=0\)

\(\Leftrightarrow (y-\frac{1}{2})^2+\frac{1}{2}=0\) (vô lý)

Vậy \((x,y)=(0,0); (2,0); (1,1)\)

 

 

 

 

11 tháng 8 2017

1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)

Lấy (1). 2 - (2) ta được:

\(2x^3+y^3-x^2y-2xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

Đến đây dễ rồi nhé ^^

2/ Ta viết lại pt thứ 2 của hệ:

\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)

\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)

\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)

Bạn làm tiếp nhé!

11 tháng 8 2017

3/ Ta viết lại pt thứ nhất của hệ

\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)

\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)

Bạn làm tiếp được chứ?

4/ Viết lại pt thứ 2 của hệ

\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)

a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)