K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

\(\Leftrightarrow\dfrac{6}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-9+x+3}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(x^2+x-12=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\)

=>x=-4(nhận) hoặc x=3(loại)

13 tháng 2 2022

Bài 1:

a,ĐKXĐ:\(\left\{{}\begin{matrix}\sqrt{a}+1\ne0\left(luôn.đúng\right)\\\sqrt{a}-5\ne0\end{matrix}\right.\Leftrightarrow\sqrt{a}\ne5\Leftrightarrow a\ne25\)

\(b,A=\left(3+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(3-\dfrac{a-5\sqrt{a}}{\sqrt{a}-5}\right)\)

\(\Rightarrow A=\left(3+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(3-\dfrac{\sqrt{a}\left(\sqrt{a}-5\right)}{\sqrt{a}-5}\right)\)

\(\Rightarrow A=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)\)

\(\Rightarrow A=9-a\)

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

23 tháng 5 2017

phương trình gì vậy ?

20 tháng 9 2017

Sao bh lại làm đề ôn thi vào 10

20 tháng 9 2017

;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))

10 tháng 7 2017

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)(Tự chứng minh BĐT này )

\(B\ge\dfrac{4}{\left(a+b\right)^2+1}\)

10 tháng 7 2017

hihicảm ơn Định đã trả lời giúp mk . Nhưng bn làm sai rồi vì nếu làm như vậy sẽ ko tìm ra a, b