Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số các số có trong dãy là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng là :
( 101 + 1 ) x 101 : 2 = 5151
Đáp số : 5151
Đặt \(A=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+...+99.100.101.4\)
\(=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)
\(=\left(1.2.3.4+2.3.4.5+...+99.100+101.102\right)-\left(0.1.2.3+1.2.3.4+...+98.99.100.101\right)\)
\(=99.100.101.102-0.1.2.3\)
\(=101989800\)
\(\Rightarrow A=101989800:4=25497450\)
Vậy \(A=25497450.\)
Đặt A = 1.2.3 + 2.3.4 + ... + 99.100.101
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ... + 99.100.101.(102-98)
=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 99.100.101.102 - 98.99.100.101
=> 4A = 99.100.101.102
=> 4A = 101989800
=> A = 25497450
I don't now
mik ko biết
sorry
......................
b,\(B=2^2+4^2+...+20^2\)
\(\Rightarrow B=2^2\left(1^2+2^2+...+10^2\right)\)
\(\Rightarrow B=4.\left[1.\left(2-1\right)+2.\left(3-1\right)+...+10.\left(11-1\right)\right]\)
\(\Rightarrow B=4\left(1.2-1+2.3-2+...+10.11-10\right)\)
\(\Rightarrow B=4\left[\left(1.2+2.3+...+10.11\right)-\left(1+2+...+10\right)\right]\)
\(\Rightarrow B=4\left(\frac{10.11.12}{3}-\frac{11.10}{2}\right)\)
1.2.3 = 1/4 . (1.2.3.4 - 0.1.2.3)
2.3.4 = 1/4 . (2.3.4.5 - 1.2.3.4)
3.4.5 = 1/4 . (3.4.5.6 - 2.3.4.5)
.................
99.100.101 = 1/4 . (99.100.101.102 - 98.99.100.101)
C = 1.2.3+2.3.4+3.4.5+.........+99.100.101
C= 1/4 . (99.100.101.102 - 98.99.100.101)
CHUC BN HOK GIỎI!
a/
\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)
\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)
b/
\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)
\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)
c/
\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)
Đặt \(C=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(4C=1.2.3.4+2.3.4.4+3.4.5.4+...+99.100.101.4\)
\(4C=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+....+99.100.101.\left(102-98\right)\)
\(4C=1.2.3.4+2.3.4.5+3.4.5.6+...+99.100.101.102\)
\(4C=99.100.101.102=101989800\)
\(\Rightarrow C=\frac{101989800}{4}=25497450\)
A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100).4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
A=98.99.100.101/4