K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

a)<=>\(\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.< =>\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

b)<=>\(\left[{}\begin{matrix}x-3=2x-5\\-x+3=2x-5\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=\frac{8}{3}\end{matrix}\right.\)

c)\(\left[{}\begin{matrix}-2x=3x+4\\2x=3x+4\end{matrix}\right.< =>\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

12 tháng 2 2017

\(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x+1=0\\2-x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[\begin{matrix}3x=-1\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{3}\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{-\frac{1}{3};2\right\}\)

12 tháng 2 2017

Có : \(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{matrix}3x+1=0\\-x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}3x=-1\\-x=-2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=\frac{-1}{3}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{3};2\right\}\)

30 tháng 8 2021

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)

TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)

TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)

b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)

\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

4 tháng 4 2020

a) 5 - (x - 6) = 4(3 - 2x)

<=> 5 - x + 6 = 12 - 8x

<=> -x + 8x = 12 - 11

<=> 7x = 1

<=> x = 1/7

Vậy S = {1/7}

b) 2x(x - 3) + 5(x - 3) = 0

<=> (2x + 5)(x - 3) = 0

<=> \(\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)

Vậy S = {-5/2; 3}

c)ĐK: x \(\ne\)1; x \(\ne\)2

 \(\frac{3x-5}{x-2}-\frac{2x-5}{x-1}=1\)

<=> \(\frac{\left(3x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(2x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}\)

<=> 3x2 - 8x + 5 - 2x2 + 9x - 10 = x2 - 3x + 2

<=> x2 + x - 5 = x2 - 3x + 2

<=> x+ x  - x2 + 3x = 2 + 5

<=> 4x = 7

<=> x = 7/4 

Vậy S = {7/4}

20 tháng 8 2020

a. | x + 1 | = 3

<=> x + 1 = 3 hoặc x + 1 = - 3

<=> x = 2 hoặc x = - 4

b. | x | = 1 - x

<=> x = 1 - x hoặc x = - 1 + x ( loại )

<=> x = 1/2 

c. | 1 - x | = x

<=> 1 - x = x hoặc 1 - x = - x ( loại )

<=> x = 1/2

d. | 2x - 3 | = 2x - 3

<=> 2x - 3 = 2x - 3 hoặc 2x - 3 = - 2x + 3

<=> với mọi x > 0 hoặc 2x - 3 = - 2x + 3

<=> với mọi x > 0 hoặc x = 0

e. | 3x + 1 | = - 3x - 1

<=> 3x + 1 = - 3x - 1 hoặc 3x + 1 = 3x + 1

<=> x = 1/3 hoặc với mọi x < 0

g. | 5 - 2x | = 2x - 5

<=> 5 - 2x = 2x - 5 hoặc 5 - 2x = - 2x + 5

<=> x = 5/2 hoặc với mọi x < 0 

18 tháng 4 2017

câu 1:

a)x-1=5-x\(\Leftrightarrow\)x+x=5+1\(\Leftrightarrow\)2x=6\(\Leftrightarrow\)x=3

Vậy tập nghiệm của PT (a) là S={3}

b)3+x=2-x\(\Leftrightarrow\)x+x=2-3\(\Leftrightarrow\)2x=-1\(\Leftrightarrow\)x=-0,5

Vậy tập nghiệm của PT (b) là:S={-0,5}

câu 2:

a) 3x+7=2x-3\(\Leftrightarrow\)3x-2x=-3-7\(\Leftrightarrow\)x=-10

Vậy tập nghiệm của PT (a) là:S={-10}

b)4-(x-2)=(3-2x)\(\Leftrightarrow\)4-x+2=3-2x\(\Leftrightarrow\)-x+2x=-4+3-2\(\Leftrightarrow\)x=-3

Vậy tập nghiệm của PT (b) là:S={-3}

Câu 3:

a)\(\dfrac{5x-4}{2}=\dfrac{16x+1}{7}\Leftrightarrow\dfrac{7\left(5x-4\right)}{14}=\dfrac{2\left(16x+1\right)}{14}\)

\(\Leftrightarrow\)35x-28=32x+2\(\Leftrightarrow\)35x-32x=2+28\(\Leftrightarrow\)3x=30\(\Leftrightarrow\)x=10

Vậy tập nghiệm của PT (a) là :S={10}

b)\(\dfrac{12x+5}{3}=\dfrac{2x-7}{4}\Leftrightarrow\dfrac{4\left(12x+5\right)}{12}=\dfrac{3\left(2x-7\right)}{12}\)

\(\Leftrightarrow\)48x+20=6x-21\(\Leftrightarrow\)48x-6x=-20-21\(\Leftrightarrow\)42x=-41\(\Leftrightarrow\)x=\(-\dfrac{41}{42}\)

Vậy tập nghiệm của PT (b) là:S={\(-\dfrac{41}{42}\)}

18 tháng 4 2017

có sai chỗ nào không bạn!!!

3 tháng 2 2019

a) \(x^5+2x^4+3x^3+3x^2+2x+1=0\)

\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)

\(\Leftrightarrow x^4\left(x+1\right)+x^3\left(x+1\right)+2x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+x^2+x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)

Dễ thấy \(x^2+x+1>0\forall x;x^2+1>0\forall x\)

\(\Rightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy....

3 tháng 2 2019

b) \(x^4+3x^3-2x^2+x-3=0\)

\(\Leftrightarrow x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0\)

\(\Leftrightarrow x^3\left(x-1\right)+4x^2\left(x-1\right)+2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+4x^2+2x+3\right)=0\)

...

\(\Leftrightarrow x=1\)

p/s: có bác nào giải đc pt \(x^3+4x^2+2x+3=0\)thì giúp nhé :))

10 tháng 5 2020

\(\frac{5}{3}-\left(2x-\frac{2}{4}\right)\ge x-\left(4x-\frac{3}{6}\right)\)

\(\Leftrightarrow\frac{5}{3}-2x+\frac{1}{2}\ge x-4x+\frac{1}{2}\)

\(\Leftrightarrow x\ge-\frac{5}{3}\)

Ý c cx vậy nha ! Chuyển vế rồi thu gọn lại 

8 tháng 4 2020

\(\left(x-1\right)^2-\left(x+1\right)^2=2\left(x+3\right)\)

\(\Leftrightarrow\left(x-1+x+1\right)\left(x-1-x-1\right)=2\left(x+3\right)\)

\(\Leftrightarrow2x\left(-2\right)=2\left(x+3\right)\)

\(\Leftrightarrow-4x=2x+6\)

\(\Leftrightarrow-6x=6\)

\(\Leftrightarrow x=-1\)
2) \(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)

\(\Leftrightarrow\left(2x-1+2x+1\right)\left(2x-1-2x-1\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow4x\left(-2\right)-4x+12=0\)

\(\Leftrightarrow-12x=-12\)

\(\Leftrightarrow x=1\)

3)\(\left(2x+3\right)^2-\left(2x+3\right)\left(2x-4\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x+3-2x+4\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow7\left(2x+3\right)+x^2-4x+4=0\)

\(\Leftrightarrow x^2+10x+25=0\)

\(\Leftrightarrow\left(x+5\right)^2=0\)

\(\Leftrightarrow x=-5\)

4) \(8x^3-\left(x+1\right)^3=3x-3\)

\(\Leftrightarrow8x^3-\left(x^3+3x+3x^2+1\right)-3x+3=0\)

\(\Leftrightarrow7x^3-3x^2-6x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x^2+4x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2+3\sqrt{2}}{7}\\x=\frac{-2-3\sqrt{2}}{7}\end{matrix}\right.\)

5)\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\left(3x\right)^3-2^3-\left(\left(3x\right)^3-1^3\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)=x-4\)

\(\Leftrightarrow-7=x-4\)

\(\Leftrightarrow x=-3\)

27 tháng 3 2020
https://i.imgur.com/cGrmxY5.jpg