Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt \(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
Do đó: A=C+D
\(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-4x^2-12x-9-5+20x\)
\(=-30\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-x^3-4x^2+246x-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
=-175
A=C+D=-30-175=-205
b: Đặt \(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
Do đó: B=E+F
\(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(=-2x\left(9x^2+12x+4\right)+16x^2+8x+1+2x^3+16x^2+6x-4-5+x\)
\(=-18x^3-24x^2-8x+32x^2+14x+1-5+x\)
\(=-18x^3+8x^2+7x-4\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
\(=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)
\(=-95\)
\(B=-18x^3+8x^2+7x-99\)
a) 2x3+5x2-3x=0
<=> 2x3+6x2-x2-3x=0
<=> 2x2(x+3)-x(x+3)=0
<=> (x+3)(2x2-x)=0
<=> (x+3)x(2x-1)=0
\(\Rightarrow\left\{{}\begin{matrix}x+3=0\\x=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
c) x3+1=x(x+1)
<=> (x+1)(x2+1-x)-x(x+1)=0
<=> (x+1)(x2-2x+1)=0
<=> (x+1)(x-1)2=0
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy ...
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
a. 5-(x-6)=4(3-2x)
<=>5-x+6 = 12-8x
<=>-x+8x =-5-6+12
<=>7x=1
<=>x=\(\frac{1}{7}\)
Vậy phương trình có nghiệm là S= ( \(\frac{1}{7}\))
c.7 -(2x+4) =-(x+4)
<=> 7-2x-4=-x-4
<=>-2x+x= -7+4-4
<=> -x = -7
<=> x=7
Vậy phương trình có nghiệm là S=(7)