Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow x\in\left\{-5;3\right\}\)
\(b,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\3x-1=4x+1\end{cases}}\)
\(c,\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\Leftrightarrow2x\left(x-4\right)\left(x+4\right)+3\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+4\right)\left(x-4\right)=0\Leftrightarrow......\)
Lời giải:
a)
$x^2+2x-15=0$
$\Leftrightarrow x^2-3x+5x-15=0$
$\Leftrightarrow x(x-3)+5(x-3)=0$
$\Leftrightarrow (x-3)(x+5)=0$
$\Rightarrow x=3$ hoặc $x=-5$
b)
$9x^2-1=(3x+1)(4x+1)=12x^2+7x+1$
$\Leftrightarrow 3x^2+7x+2=0$
$\Leftrightarrow (x+2)(3x+1)=0$
$\Rightarrow x=-2$ hoặc $x=-\frac{1}{3}$
c)
$2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^3-8x^2+11x^2-44x+12x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)(2x^2+8x+3x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x=\pm 4$ hoặc $x=-\frac{3}{2}$
a.ĐK: 2x2+1\(\ne0\) \(\forall x\)
Để phương trình bằng 0 thì 4x-8=0 ( Vì 2x2+1 >0 với mọi x)
\(\Leftrightarrow x=2\) (TM)
Vậy ...
b.ĐK: x-3\(\ne0\) \(\Leftrightarrow x\ne3\)
Để phương trình bằng 0 thì x2-x-6=0 (Vì x-3\(\ne0\))
\(\Leftrightarrow\left[{}\begin{matrix}x=2\:\left(TM\right)\\x=-3\:\left(TM\right)\end{matrix}\right.\)
Vậy ...
c. ĐK: x\(\ne\)2
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\Leftrightarrow\frac{x+5}{3\left(x-2\right)}-\frac{1}{2}=\frac{2x-3}{2\left(x-2\right)}\)
\(\Leftrightarrow\frac{2\left(x+5\right)-3\left(x-2\right)}{6\left(x-2\right)}=\frac{3\left(2x-3\right)}{6\left(x-2\right)}\)
\(\Leftrightarrow2x+10-3x+6=6x-9\) (x\(\ne\)2)
\(\Leftrightarrow x=\frac{25}{7}\left(TM\right)\)
Vậy ...
d. ĐK: \(x\ne\pm\frac{1}{3}\)
\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
\(\Leftrightarrow\frac{12}{1-9x^2}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{1-9x^2}\)
\(\Leftrightarrow12=1-6x+9x^2-1-6x-9x^2\) (\(x\ne\pm\frac{1}{3}\))
\(\Leftrightarrow x=-2\:\left(TM\right)\)
Vậy...
Bài 2:
a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(2x-1\right)-5\left(x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3\right)-\left(5x+40\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-43=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{1;43\right\}\)
b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow9x^2-1-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{1}{3};-2\right\}\)
c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(49-x^2\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(7-x\right)\left(7+x\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1-7+x\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(4x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\4x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-7;2\right\}\)
d, \(x^3-5x^2+6x=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow x\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{0;2;3\right\}\)
e, \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\)
\(\Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{4;-4;3-\frac{3}{2}\right\}\)
a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
<=> 1 - x + 3(x + 1) = 2x + 3
<=> 1 - x + 3x + 3 = 2x + 3
<=> 1 - x + 3x + 3 - 2x = 3
<=> 4 = 3 (vô lý)
=> pt vô nghiệm
b) ĐKXĐ: \(x\ne1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)
<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30
<=> -x + 4x2 - 14 = 15x - 30
<=> x - 4x2 + 14 = 15x - 30
<=> x - 4x2 + 14 + 15x - 30 = 0
<=> 16x - 4x2 - 16 = 0
<=> 4(4x - x2 - 4) = 0
<=> -x2 + 4x - 4 = 0
<=> x2 - 4x + 4 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2 (ktm)
=> pt vô nghiệm
c) xem bài 4 ở đây: Câu hỏi của gjfkm
d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)
\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)
<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10
<=> 2x2 - 14 = 2x2 + x - 10
<=> 2x2 - 14 - 2x2 = x - 10
<=> -14 = x - 10
<=> -14 + 10 = x
<=> -4 = x
<=> x = -4
a) \(\frac{4x-8}{2x^2+1}=0\)
\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2
b)
\(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
Lời giải:
a)
$3(x-1)(2x-1)=5(x+8)(x-1)$
$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$
$\Leftrightarrow (x-1)(x-43)=0$
$\Rightarrow x-1=0$ hoặc $x-43=0$
$\Rightarrow x=1$ hoặc $x=43$
b)
$9x^2-1=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$
$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$
$\Leftrightarrow (3x+1)(x+2)=0$
$\Rightarrow 3x+1=0$ hoặc $x+2=0$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
c)
$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$
$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$
$\Leftrightarrow (x+7)(3x-1-7+x)=0$
$\Leftrightarrow (x+7)(4x-8)=0$
$\Rightarrow x+7=0$ hoặc $4x-8=0$
$\Rightarrow x=-7$ hoặc $x=2$
d)
$x^3-5x^2+6x=0$
$\Leftrightarrow x(x^2-5x+6)=0$
$\Leftrightarrow x(x-2)(x-3)=0$
$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$
$\Rightarrow x=0; x=2$ hoặc $x=3$
e)
$2x^3+3x^2-32x=48$
$\Leftrightarrow 2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$
$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$
Lời giải:
a)
$3(x-1)(2x-1)=5(x+8)(x-1)$
$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$
$\Leftrightarrow (x-1)(x-43)=0$
$\Rightarrow x-1=0$ hoặc $x-43=0$
$\Rightarrow x=1$ hoặc $x=43$
b)
$9x^2-1=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$
$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$
$\Leftrightarrow (3x+1)(x+2)=0$
$\Rightarrow 3x+1=0$ hoặc $x+2=0$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
c)
$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$
$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$
$\Leftrightarrow (x+7)(3x-1-7+x)=0$
$\Leftrightarrow (x+7)(4x-8)=0$
$\Rightarrow x+7=0$ hoặc $4x-8=0$
$\Rightarrow x=-7$ hoặc $x=2$
d)
$x^3-5x^2+6x=0$
$\Leftrightarrow x(x^2-5x+6)=0$
$\Leftrightarrow x(x-2)(x-3)=0$
$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$
$\Rightarrow x=0; x=2$ hoặc $x=3$
e)
$2x^3+3x^2-32x=48$
$\Leftrightarrow 2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$
$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$
a. \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left[3\left(2x-1\right)-5\left(x+8\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)
b. \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow-\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)
c. \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d. \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(5x^2-20x\right)-\left(12x-48\right)=0\)
\(\Leftrightarrow2x^2\left(x-4\right)+5x\left(x-4\right)-12\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x^2+5x-12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)-\left(3x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)-3\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\frac{3}{2}\end{matrix}\right.\)
e. \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)