K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

a. \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left[3\left(2x-1\right)-5\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)

b. \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

\(\Leftrightarrow-\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)

c. \(\left(2x+1\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

d. \(2x^3+3x^2-32x=48\)

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(5x^2-20x\right)-\left(12x-48\right)=0\)

\(\Leftrightarrow2x^2\left(x-4\right)+5x\left(x-4\right)-12\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x^2+5x-12\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)-\left(3x+12\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)-3\left(x+4\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\frac{3}{2}\end{matrix}\right.\)

e. \(x^2+2x-15=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

25 tháng 4 2019

\(a,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow x\in\left\{-5;3\right\}\)

\(b,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\3x-1=4x+1\end{cases}}\)

\(c,\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\Leftrightarrow2x\left(x-4\right)\left(x+4\right)+3\left(x-4\right)\left(x+4\right)\)

\(\Leftrightarrow\left(2x+3\right)\left(x+4\right)\left(x-4\right)=0\Leftrightarrow......\)

25 tháng 4 2019

a, x1=3 ; x2=-5

b,x1=-2 ; x2=-1/3

AH
Akai Haruma
Giáo viên
8 tháng 2 2020

Lời giải:
a)

$x^2+2x-15=0$

$\Leftrightarrow x^2-3x+5x-15=0$

$\Leftrightarrow x(x-3)+5(x-3)=0$

$\Leftrightarrow (x-3)(x+5)=0$

$\Rightarrow x=3$ hoặc $x=-5$

b)

$9x^2-1=(3x+1)(4x+1)=12x^2+7x+1$

$\Leftrightarrow 3x^2+7x+2=0$

$\Leftrightarrow (x+2)(3x+1)=0$

$\Rightarrow x=-2$ hoặc $x=-\frac{1}{3}$

c)

$2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^3-8x^2+11x^2-44x+12x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)(2x^2+8x+3x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x=\pm 4$ hoặc $x=-\frac{3}{2}$

21 tháng 3 2020

a.ĐK: 2x2+1\(\ne0\) \(\forall x\)

Để phương trình bằng 0 thì 4x-8=0 ( Vì 2x2+1 >0 với mọi x)

\(\Leftrightarrow x=2\) (TM)

Vậy ...

b.ĐK: x-3\(\ne0\) \(\Leftrightarrow x\ne3\)

Để phương trình bằng 0 thì x2-x-6=0 (Vì x-3\(\ne0\))

\(\Leftrightarrow\left[{}\begin{matrix}x=2\:\left(TM\right)\\x=-3\:\left(TM\right)\end{matrix}\right.\)

Vậy ...

c. ĐK: x\(\ne\)2

\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\Leftrightarrow\frac{x+5}{3\left(x-2\right)}-\frac{1}{2}=\frac{2x-3}{2\left(x-2\right)}\)

\(\Leftrightarrow\frac{2\left(x+5\right)-3\left(x-2\right)}{6\left(x-2\right)}=\frac{3\left(2x-3\right)}{6\left(x-2\right)}\)

\(\Leftrightarrow2x+10-3x+6=6x-9\) (x\(\ne\)2)

\(\Leftrightarrow x=\frac{25}{7}\left(TM\right)\)

Vậy ...

d. ĐK: \(x\ne\pm\frac{1}{3}\)

\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\Leftrightarrow\frac{12}{1-9x^2}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{1-9x^2}\)

\(\Leftrightarrow12=1-6x+9x^2-1-6x-9x^2\) (\(x\ne\pm\frac{1}{3}\))

\(\Leftrightarrow x=-2\:\left(TM\right)\)

Vậy...

16 tháng 3 2020

Bài 2:

a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow3\left(x-1\right)\left(2x-1\right)-5\left(x+8\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x-3\right)-\left(5x+40\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-43=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{1;43\right\}\)

b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow9x^2-1-\left(3x+1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{1}{3};-2\right\}\)

c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)

\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(49-x^2\right)=0\)

\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(7-x\right)\left(7+x\right)=0\)

\(\Leftrightarrow\left(x+7\right)\left(3x-1-7+x\right)=0\)

\(\Leftrightarrow\left(x+7\right)\left(4x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\4x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{-7;2\right\}\)

d, \(x^3-5x^2+6x=0\)

\(\Leftrightarrow x\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow x\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)

\(\Leftrightarrow x\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{0;2;3\right\}\)

e, \(2x^3+3x^2-32x=48\)

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\)

\(\Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{4;-4;3-\frac{3}{2}\right\}\)

Dễ mà bạn

26 tháng 2 2019

a , 2x -3 = 5x + 6

    2x -5x=6+3

    -3x = 9

     x =9 :(-3)

   x= -3

26 tháng 2 2019

a) 2x-5x=3+6

-3x=9

x=-3

vậy........

b)(2x+1).(3x-2)-(5x-8).(2x+1)=0

(2x+1).(3x-2-2x-1)=0

(2x-1).(x-3)=0

==>x=1/2 ; x=3

c)(2x+1).5-(7x+5)=(2x-2).3

10x+5-7x-5=6x-6

3x=6x-6

3x-6x=6

-3x=6

x=-2

14 tháng 3 2020

a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> 1 - x + 3(x + 1) = 2x + 3

<=> 1 - x + 3x + 3 = 2x + 3

<=> 1 - x + 3x + 3 - 2x = 3

<=> 4 = 3 (vô lý)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)

<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30

<=> -x + 4x2 - 14 = 15x - 30

<=> x - 4x2 + 14 = 15x - 30 

<=> x - 4x2 + 14 + 15x - 30 = 0

<=> 16x - 4x2 - 16 = 0

<=> 4(4x - x2 - 4) = 0

<=> -x2 + 4x - 4 = 0

<=> x2 - 4x + 4 = 0

<=> (x - 2)2 = 0

<=> x - 2 = 0

<=> x = 2 (ktm)

=> pt vô nghiệm 

c) xem bài 4 ở đây: Câu hỏi của gjfkm

d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)

\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)

<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)

<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)

<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10

<=> 2x2 - 14 = 2x2 + x - 10

<=> 2x2 - 14 - 2x2 = x - 10

<=> -14 = x - 10

<=> -14 + 10 = x

<=> -4 = x

<=> x = -4

20 tháng 2 2020

a) \(\frac{4x-8}{2x^2+1}=0\)

\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

Vậy x=2

b)

\(\frac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)

\(\Rightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy x=-2

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

a)

$3(x-1)(2x-1)=5(x+8)(x-1)$

$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$

$\Leftrightarrow (x-1)(x-43)=0$

$\Rightarrow x-1=0$ hoặc $x-43=0$

$\Rightarrow x=1$ hoặc $x=43$

b)

$9x^2-1=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$

$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$

$\Leftrightarrow (3x+1)(x+2)=0$

$\Rightarrow 3x+1=0$ hoặc $x+2=0$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$

c)

$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$

$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$

$\Leftrightarrow (x+7)(3x-1-7+x)=0$

$\Leftrightarrow (x+7)(4x-8)=0$

$\Rightarrow x+7=0$ hoặc $4x-8=0$

$\Rightarrow x=-7$ hoặc $x=2$

d)

$x^3-5x^2+6x=0$

$\Leftrightarrow x(x^2-5x+6)=0$

$\Leftrightarrow x(x-2)(x-3)=0$

$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$

$\Rightarrow x=0; x=2$ hoặc $x=3$

e)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

a)

$3(x-1)(2x-1)=5(x+8)(x-1)$

$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$

$\Leftrightarrow (x-1)(x-43)=0$

$\Rightarrow x-1=0$ hoặc $x-43=0$

$\Rightarrow x=1$ hoặc $x=43$

b)

$9x^2-1=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$

$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$

$\Leftrightarrow (3x+1)(x+2)=0$

$\Rightarrow 3x+1=0$ hoặc $x+2=0$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$

c)

$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$

$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$

$\Leftrightarrow (x+7)(3x-1-7+x)=0$

$\Leftrightarrow (x+7)(4x-8)=0$

$\Rightarrow x+7=0$ hoặc $4x-8=0$

$\Rightarrow x=-7$ hoặc $x=2$

d)

$x^3-5x^2+6x=0$

$\Leftrightarrow x(x^2-5x+6)=0$

$\Leftrightarrow x(x-2)(x-3)=0$

$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$

$\Rightarrow x=0; x=2$ hoặc $x=3$

e)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$