Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-9x^2+20=0\)
\(\Leftrightarrow x^4-4x^2-5x^2+20=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)-5\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^2-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm2\right\}\\x\in\left\{\pm\sqrt{5}\right\}\end{cases}}\)
Vậy....
\(x^4-9x^2+20=0\)
\(\Leftrightarrow x^4-4x^2-5x^2+20=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)-5\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5=0\\x^2-4=0\end{cases}}\Leftrightarrow x\in\left\{\pm2\right\}\)
\(\hept{\begin{cases}7x-3y=4\\4x+y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}7x-3y=4\\12x+3y=15\end{cases}}\)
Cộng vế ta được :
\(7x-3y+12x+3y=4+15\)
\(\Leftrightarrow19x=19\)
\(\Leftrightarrow x=1\)
Khi đó : \(7-3y=4\Leftrightarrow y=1\)
Vậy \(x=y=1\)
a) \(\left\{{}\begin{matrix}x-y=3\left(1\right)\Rightarrow y=x-3\left(3\right)\\3x-4y=2\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow3x-4\left(x-3\right)=2\)
\(\Leftrightarrow3x-4x+12=2\)
\(\Leftrightarrow-x=-10\Leftrightarrow x=10\)
thay x=10 vào (3)\(\Rightarrow y=10-3=7\)
Nghiệm của hệ \(\left\{10;7\right\}\)
b)\(\left\{{}\begin{matrix}7x-3y=5\left(1\right)\\4x+y=2\left(2\right)\Rightarrow y=2-4x\left(3\right)\end{matrix}\right.\)
thay (3) vào (1)\(\Rightarrow7x-3\left(2-4x\right)=5\)
\(\Leftrightarrow7x-6+12x=5\)
\(\Leftrightarrow19x=11\Leftrightarrow x=\dfrac{11}{19}\)
thay \(x=\dfrac{11}{19}vào\left(3\right)\)\(\Rightarrow y=2-4\dfrac{11}{19}=-\dfrac{6}{19}\)
nghiệm của hệ \(\left\{\dfrac{11}{19};\dfrac{-6}{19}\right\}\)
c)\(\left\{{}\begin{matrix}x+3y=-2\left(1\right)\Rightarrow x=-2-3y\left(3\right)\\5x-4y=1\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow5\left(-2-3y\right)-4y=1\)
\(\Leftrightarrow-10-15y-4y=1\)
\(\Leftrightarrow-19y=11\Leftrightarrow y=\dfrac{-11}{19}\)
thay \(y=\dfrac{-11}{19}vào\left(3\right)\Rightarrow x=-2-3\left(\dfrac{-11}{19}\right)=\dfrac{-5}{19}\)nghiệm của hệ \(\left\{\dfrac{-5}{9};\dfrac{-11}{19}\right\}\)
c)\(\left\{{}\begin{matrix}x+3y=-2\left(1\right)\Rightarrow x=-2-3y\left(3\right)\\5x-4y=1\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow5\left(-2-3y\right)-4y=1\)
\(\Leftrightarrow-10-15y-4y=1\)
\(\Leftrightarrow-19y=11\Leftrightarrow y=\dfrac{-11}{19}\)
thay \(y=\dfrac{-11}{19}vào\left(3\right)\Rightarrow x=-2-3\left(\dfrac{-11}{19}\right)=\dfrac{-5}{19}\)
nghiệm của hệ\(\left\{\dfrac{-5}{19};\dfrac{-11}{19}\right\}\)
CHÚC BẠN HỌC TỐT !
-có người nhờ t làm
\(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-3y=9\left(1\right)\\3x-4y=2\left(2\right)\end{matrix}\right.\) lấy (1)-(2) tìm được x;sau đó dễ dàng có y
\(\left\{{}\begin{matrix}7x-3y=5\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}28x-12y=20\left(1\right)\\28x+7y=14\left(2\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+3y=-2\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\left(1\right)\\5x-4y=11\left(2\right)\end{matrix}\right.\)
Gt: Nhân sao cho cả 2 pt xuất hiện chung 1 thừa số,trừ đi chỉ còn 1 x or y
a) Xem lại đề
b) \(\left\{{}\begin{matrix}5x-3y=5\\2x+5y=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5.\frac{33-5y}{2}-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}165-25y-6y=10\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31y=155\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=\frac{33-5.5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=4\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\frac{x}{2}-\frac{y}{3}=0\\5x+y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{x}{2}-\frac{13-5x}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{3x-26+10x}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5.2\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)
a) Từ phương trình thứ nhất ta có x = -y.
Thế vào x trong phương trình thứ hai ta được:
-y . + 3y = 1 - ⇔ -2y = 1 -
⇔ y =
Từ đó: x - . =
Vậy hệ phương trình có nghiệm: (x, y) =
b) Từ phương trình thứ hai ta có y = 4 - 2 - 4x.
Thế vào y trong phương trình thứ hai được
(2 - )x - 3(4 - 2 - 4x) = 2 + 5
⇔ (14 - )x = 14 - ⇔ x = 1
Từ đó y = 4 - 2 - 4 . 1 = -2.
Vậy hệ phương trình có nghiệm:
(x; y) = (1; -2)
a) Từ phương trình thứ nhất ta có x = -y.
Thế vào x trong phương trình thứ hai ta được:
-y . + 3y = 1 - ⇔ -2y = 1 -
⇔ y =
Từ đó: x - . =
Vậy hệ phương trình có nghiệm: (x, y) =
b) Từ phương trình thứ hai ta có y = 4 - 2 - 4x.
Thế vào y trong phương trình thứ hai được
(2 - )x - 3(4 - 2 - 4x) = 2 + 5
⇔ (14 - )x = 14 - ⇔ x = 1
Từ x - y = 3 => x = 3 + y.
Thay x = 3 + y vào phương trình 3x - 4y = 2.
Ta được 3(3 + y) - 4y = 2 ⇔ 9 + 3y - 4y = 2.
⇔ -y = -7 ⇔ y = 7
Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.
Vậy hệ phương trình có nghiệm (10; 7).
b) Từ 4x + y = 2 => y = 2 - 4x.
Thay y = 2 - 4x vào phương trình 7x - 3y = 5.
Ta được 7x - 3(2 - 4x) = 5 ⇔ 7x - 6 + 12x = 5.
⇔ 19x = 11 ⇔ x =
Thay x = vào y = 2 - 4x ta được y = 2 - 4 . = 2 - = -
Hệ phương trình có nghiệm (; -)
c) Từ x + 3y = -2 => x = -2 - 3y.
Thay vào 5x - 4y = 11 ta được 5(-2 - 3y) - 4y = 11
⇔ -10 - 15y - 4y = 11
⇔ -19y = 21 ⇔ y = -
Nên x = -2 -3(-) = -2 + =
Vậy hệ phương trình có nghiệm (; -).
Từ x - y = 3 => x = 3 + y.
Thay x = 3 + y vào phương trình 3x - 4y = 2.
Ta được 3(3 + y) - 4y = 2 ⇔ 9 + 3y - 4y = 2.
⇔ -y = -7 ⇔ y = 7
Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.
Vậy hệ phương trình có nghiệm (10; 7).
b) Từ 4x + y = 2 => y = 2 - 4x.
Thay y = 2 - 4x vào phương trình 7x - 3y = 5.
Ta được 7x - 3(2 - 4x) = 5 ⇔ 7x - 6 + 12x = 5.
⇔ 19x = 11 ⇔ x =
Thay x = vào y = 2 - 4x ta được y = 2 - 4 . = 2 - = -
Hệ phương trình có nghiệm (; -)
c) Từ x + 3y = -2 => x = -2 - 3y.
Thay vào 5x - 4y = 11 ta được 5(-2 - 3y) - 4y = 11
⇔ -10 - 15y - 4y = 11
⇔ -19y = 21 ⇔ y = -
a)\(\Leftrightarrow\left\{{}\begin{matrix}25x+15y=40xy\left(1\right)\\24x+16y=40xy\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2), ta được: x-y=0\(\Leftrightarrow x=y\)
Thay vào 5x+3y=8xy ta được: \(5x+3x=8x^2\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\).\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)
Vậy hpt có nghiệm (0;0);(1;1).
b)\(\Leftrightarrow\left\{{}\begin{matrix}-5x+5y=5xy\left(1\right)\\4x+3y=5xy\left(2\right)\end{matrix}\right.\)
Lấy (2) trừ (1) ta được: 9x-2y=0 \(\Leftrightarrow y=\dfrac{9x}{2}\)
Thay vào -x+y=xy ta được: \(-x+\dfrac{9x}{2}=x^2\)
\(\Leftrightarrow-2x+9x=2x^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{7}{2}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=\dfrac{63}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy hpt có nghiệm (0;0).
c) Từ 2x-y=5\(\Rightarrow y=2x-5\)
Thay vào \(\left(x+y+2\right)\left(x+2y-5\right)=0\), ta được:
\(\left(3x-3\right)\left(5x-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=5\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\left(TM\right)\\y=5\left(KTM\right)\end{matrix}\right.\)
Vậy hpt có nghiệm (3;1).
a/ Đặt \(x^2=a\ge0\) pt trở thành:
\(a^2-9a+20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=5\\x^2=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{5}\\x=\pm2\end{matrix}\right.\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}7x-3y=4\\12x+3y=15\end{matrix}\right.\) \(\Rightarrow19x=19\Rightarrow x=1\)
\(4x+y=5\Rightarrow y=5-4x=5-4=1\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(1;1\right)\)