K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

8 tháng 8 2020

b) Cách làm cũng giống như thế :v

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(PT\Leftrightarrow\left(x-1\right)\left(\frac{4x+6}{\sqrt{2x-1}+1}+\frac{x}{\sqrt{x+3}+2}+x\right)=0\)

\(\Leftrightarrow x=1\) (TMĐK)

8 tháng 8 2020

a) ĐKXĐ: \(x\ge1\).

\(PT\Leftrightarrow x\left(\sqrt{x-1}-1\right)+\left(2x+1\right)\left(\sqrt{x+2}-2\right)+\left(x^3-4x^2+6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x}{\sqrt{x-1}+1}+\frac{2x+1}{\sqrt{x+2}+2}+x^2-2x+2\right)=0\)

\(\Leftrightarrow x=2\left(TMĐK\right)\)

7 tháng 10 2021

a, \(x-3\sqrt{x}+2=0\Leftrightarrow x-2\sqrt{x}-\sqrt{x}+2=0\)đk : x >= 0 

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=1;x=4\)

b, \(\sqrt{x^2-1}-\sqrt{x+1}=0\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{x+1}=0\)đk : \(x\ge1\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x-1}-1\right)=0\)

TH1 : \(x=-1\)( loại )

TH2 : \(\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)

c, \(x^2+4x+4-\sqrt{2x+1}-\left(x-1\right)^2=0\)đk : x>= -1/2 

\(\Leftrightarrow\left(x+2\right)^2-\left(x-1\right)^2-\sqrt{2x+1}=0\)

\(\Leftrightarrow3\left(2x+1\right)-\sqrt{2x+1}=0\Leftrightarrow\sqrt{2x+1}\left(3\sqrt{2x+1}-1\right)=0\)

TH1 : \(x=-\frac{1}{2}\)

TH2 : \(\sqrt{2x+1}=\frac{1}{3}\Leftrightarrow2x+1=\frac{1}{9}\Leftrightarrow x=\frac{\frac{1}{9}-1}{2}=\frac{-\frac{8}{9}}{2}=-\frac{4}{9}\)

7 tháng 10 2021

a) ĐK : x \(\ge0\) 

\(x-3\sqrt{x}+2=0\)

<=> \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)(tm) 

b) ĐK \(\hept{\begin{cases}x\ge-1\\x\notin\left\{x\in R|-1< x< 0\right\}\end{cases}}\)

\(\sqrt{x^2-1}-\sqrt{x+1}=0\)

<=> \(\sqrt{x-1}\sqrt{x+1}-\sqrt{x+1}=0\)

<=> \(\sqrt{x-1}\left(\sqrt{x+1}-1\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x-1}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)(tm) 

c) ĐK : \(x\ge-\frac{1}{2}\)

 \(x^2+4x+4-\sqrt{2x+1}-\left(x-1\right)^2=0\)

<=> \(6x+3-\sqrt{2x+1}=0\)

<=> \(\sqrt{2x+1}\left(3\sqrt{2x+1}-1\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{2x+1}=0\\3\sqrt{2x+1}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{4}{9}\end{cases}}\)(tm) 

30 tháng 7 2018

a)

DK: x\(\ge\)-2,x\(\ge\)\(\dfrac{1}{2}\)

=>\(\sqrt{4\left(x+2\right)}-\sqrt{2x-1}+\sqrt{9\left(x+2\right)}=0\)

\(\Leftrightarrow2\sqrt{x+2}-\sqrt{2x-1}+3\sqrt{x+2}=0\)

\(\Leftrightarrow5\sqrt{x+2}-\sqrt{2x-1}=0\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

<=>25x+50=2x-1

=>23x=-51

=>x=\(-\dfrac{51}{23}\)(ko thỏa mãn dk)

=> phương trình vô nghiệm..

b)

ĐKXĐ:\(x\ge1,x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-1\right)}-3\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)(nhận)

Vậy S={1;8}

c) ĐKXĐ:

\(x\ge0\)

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}=-11\)

\(\Leftrightarrow\sqrt{2x}=1\)

\(\Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)

30 tháng 7 2018

Câu a :\(\sqrt{4x+8}-2\sqrt{2x-1}+\sqrt{9x+18}=0\) ( ĐK : \(x\ge\dfrac{1}{2}\) )

\(\Leftrightarrow\sqrt{4x+8}+\sqrt{9x+18}=\sqrt{2x-1}\)

\(\Leftrightarrow2\sqrt{x+2}+3\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow25\left(x+2\right)=2x-1\)

\(\Leftrightarrow25x+50=2x-1\)

\(\Leftrightarrow23x=-51\)

\(\Leftrightarrow x=-\dfrac{51}{23}< -\dfrac{1}{2}\)

Vậy phương trình vô nghiệm .

Câu b :

\(\sqrt{x^2-1}-\sqrt{9\left(x-1\right)}=0\) ( ĐK : \(x\ge1\) )

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-3\sqrt{\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)}\left(\sqrt{x+1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

Vậy \(S=\left\{1;8\right\}\)

Câu c : \(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\) ( ĐK : \(x\ge\dfrac{5}{6}\) )

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}+11=0\)

\(\Leftrightarrow-11\left(\sqrt{2x}-1\right)=0\)

\(\Leftrightarrow\sqrt{2x}-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

Chúc bạn học tốt

24 tháng 6 2017

c) 

\(\sqrt{\left(x-1\right)^2}=2\)

x-1=2

x=3

d) \(\Leftrightarrow2+3\sqrt{x}+x=x+5\)

\(\Leftrightarrow3\sqrt{x}=3\)

<=> x=1

24 tháng 6 2017

a) 

\(\Leftrightarrow\sqrt{\left(x+2\right)}.\sqrt{\left(x-2\right)}-\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+2}=0\\\sqrt{x-2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

b)

\(\Leftrightarrow\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

\(\Leftrightarrow2\sqrt{x-2}+\sqrt{2}-\sqrt{2}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{x-2}=\sqrt{2}\)

\(\Leftrightarrow x-2=2\)

\(\Leftrightarrow x=4\)

2 phần kia mình đăng sau (dài quá r)

8 tháng 10 2021

loading...loading...

 

 

9 tháng 10 2021

a)\(\sqrt{4x+20}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{9x-45}\)=4  ; ĐKXĐ : x ≥_+ 5

⇔ \(\sqrt{2^2x+2^2.5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{3^2x-3^2.5}\) =4

⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)3\(\sqrt{x-5}\) =4 ⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\sqrt{x-5}\) =4⇔2\(\sqrt{x+5}\)=4(tm)

\(\sqrt{x+5}\)=2⇔x+5=4 ⇔x=-1

                                          Vậy x=-1

b) \(\sqrt{x^2-36}\) - \(\sqrt{x-6}\) =0 ; ĐKXĐ: x≥_+6

⇔ \(\sqrt{\left(x-6\right)\left(x+6\right)}\) - \(\sqrt{x-6}\)  =0 ⇔ \(\sqrt{x-6}\).\(\sqrt{x+6}\) - \(\sqrt{x-6}\) =0

⇔ \(\sqrt{x-6}\)(\(\sqrt{x+6}\) -1 )=0 ⇔\([\) \(\begin{matrix}\sqrt{x-6}&=0\\\sqrt{x+6}-1&=0\end{matrix}\) ⇔ \([\) \(\begin{matrix}x-6&=0\\x+6-1&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=6\left(ktm\right)\\x&=-5\left(tm\right)\end{matrix}\)

                                             Vậy x=-5

c) \(\sqrt{4-x^2}\) -x +2 =0 ; ĐKXĐ: -2≤x≤2

⇔ \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -x+2 =0  ⇔  \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -(x-2)=0

⇔  \(\sqrt{\left(2-x\right)\left(2+x\right)}\) =(x-2) ⇔ (2-x)(2+x)=(x-2)2 ⇔ 4-x2 = x2-4x+4 ⇔ -x2-x2+4x=4-4

        ⇔-2x2+4x=0 ⇔ -2x(x-2)=0 ⇔ \([\) \(\begin{matrix}-2x&=0\\x-2&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=0\left(tm\right)\\x&=2\left(tm\right)\end{matrix}\)

                                          Vậy S=\(\left\{0;2\right\}\)

d) \(\sqrt{\left(2x-3\right)\left(x-1\right)}-\sqrt{x-1}=0\) ; ĐKXĐ: x≥\(\dfrac{3}{2}\);x ≥ 1

\(\sqrt{2x-3}.\sqrt{x-1}-\sqrt{x-1}=0\) ⇔ \(\sqrt{x-1}.\left(\sqrt{2x-3}-1\right)=0\) 

⇔ \(\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{2x-3}-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x-1=0\\2x-3-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

             Vậy s=\(\left\{1:2\right\}\)