K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

\(a,\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\left(x\ne2;x\ne3\right)\\ \Leftrightarrow\dfrac{5}{\left(x-3\right)\left(x-2\right)}-\dfrac{x+3}{x-2}=0\\\Leftrightarrow\dfrac{5-\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}=0 \\ \Leftrightarrow5-x^2+9=0\\ \Leftrightarrow14-x^2=0\\ \Leftrightarrow x^2=14\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{14}\\x=-\sqrt{14}\end{matrix}\right.\)

\(b,\dfrac{x}{2x+2}-\dfrac{2x}{x^2-2x-3}=\dfrac{x}{6-2x}\left(x\ne-1;x\ne3\right)\\ \Leftrightarrow\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}=\dfrac{x}{2\left(3-x\right)}\\ \Leftrightarrow\dfrac{x\left(x-3\right)-2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=\dfrac{-x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}\\ \Leftrightarrow x^2-3x-4x=-x^2-x\\ \Leftrightarrow2x^2-6x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

\(c,\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\left(x\ne1\right)\\ \Leftrightarrow\dfrac{x^2+x+1-3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\\ \Leftrightarrow-2x^2+x+1=2x^2-2x\\ \Leftrightarrow4x^2-3x-1=0\\ \Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{4}\end{matrix}\right.\)

\(d,\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}=\dfrac{5-x}{2x^2+10x}\left(x\ne5;x\ne-5\right)\\ \Leftrightarrow\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}=\dfrac{5-x}{2x\left(x+5\right)}\\ \Leftrightarrow\dfrac{x^2+25x-2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{\left(5-x\right)\left(x-5\right)}{2x\left(x+5\right)\left(x-5\right)}\\ \Leftrightarrow x^2+25x-2\left(x^2+10x+25\right)=-\left(x^2-10x+25\right)\\ \Leftrightarrow x^2+25x-2x^2-20x-50=-x^2+10x-25\\ \Leftrightarrow-5x=25\\ \Leftrightarrow x=-5\)

Tick nha

13 tháng 8 2021

câu d kết luận là phương trình vô nghiệm ak bn 

15 tháng 6 2018

a) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)\)

\(=\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)\)

\(=\left(x-2\right)\left(x+2-3+2x\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) ĐKXĐ: x ≠ 5; x ≠ -5

Với điều kiện trên ta có:

\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x^2-25\right)}=0\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=0\)

\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2-x\left(x+25\right)=0\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)

\(\Leftrightarrow5x-25=0\)

\(\Leftrightarrow5x=25\)

\(\Leftrightarrow x=5\)(Không thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là S = ∅

c) ĐKXĐ: x ≠ 1

Với điều kiện trên ta có:

\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2x}{x^2+x+1}=0\)

\(\Rightarrow x^2+x+1-3x^2-2x\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1-3x^2-2x^2+2x=0\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-4x^2+4x-x+1=0\)

\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(Khôngthoảman\right)\\x=-\dfrac{1}{4}\left(Thỏamãn\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{1}{4}\right\}\)

25 tháng 10 2015

a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2 

=> 5x^2 = 5 hoặc 5x^2 = 1 

b) pt <=> l(x-1)^2l = x + 2 

VÌ ( x - 1 )^2 >=  0  => l( x - 1 )^2 l = ( x- 1 )^2 

pt <=> x^2 - 2x + 1 = x + 2 <=>

 x^2 - 3x - 1 = 0 

c) l2x-5l - l2x^2 - 7x + 5 l =  0 

<=> l2x-5l - l ( 2x-5)(x-1) l = 0 

<=> l2x-5l ( 1 - l x - 1 l = 0 

<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0 

d); e lập bảng xét dấu sau đó xét ba trường hợ p ra 

a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)

\(\Leftrightarrow10x^2+13x+20=0\)

\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)

Do đó: Phương trình vô nghiệm

b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)

=>8x=2

hay x=1/4

c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)

\(\Leftrightarrow x^2-5x-5=0\)

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)

16 tháng 11 2019

a) b) c) bạn bình phương 2 vế

d) pt <=>3-x=x+3+2.căn(x+2)

<=> -2x=2.căn (x+2)

<=>-x=căn (x+2) (x<=0)

<=> x^2=x+2

<=>x=-1 hoặc x=2

Xong bạn xét ĐKXĐ

16 tháng 11 2019

giải giúp tớ a , b,c luôn đi cậu :<

21 tháng 4 2020

conkia

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

NV
3 tháng 1 2019

1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)

\(t^2-2+\left(3-t\right)x-1-2t=0\)

\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)

Vậy nghiệm pt là \(x=\pm\sqrt{7}\)

2/

\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)

Đặt \(\sqrt{x^2+3}-3x=t\)

\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)

TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)

TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)

NV
3 tháng 1 2019

3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)

\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)

\(\Rightarrow VT\le2\)

\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)

\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

4/

ĐKXĐ: \(x\ge\dfrac{-5}{4}\)

\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)