Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
a/ Chắc là bạn ghi nhầm đề? Số cuối là số 9 mới đúng, chứ 27 thì câu này vô nghiệm
\(x^4+4x^3+4x^2+8x^2+12x+27=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2+8\left(x+\frac{3}{4}\right)^2+\frac{45}{2}=0\)
Vế phải dương nên pt vô nghiệm
b/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:
\(x^2+\frac{1}{x^2}-5\left(x-\frac{1}{x}\right)+6=0\)
Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)
\(\Rightarrow a^2+2-5a+6=0\)
\(\Leftrightarrow a^2-5a+8=0\Rightarrow\) pt vô nghiệm
Lại nhầm đề nữa???? Dấu thứ 2 là dấu + thì pt này có nghiệm đẹp
Giải các phương trình và hệ phương trình:
a) x2 - \(2\sqrt{5}\)x + 5 = 0
Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)
Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )
c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)
Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)
b: \(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-18\right)=-36\)
\(\Leftrightarrow\left(x^2+3x\right)^2-16\left(x^2+3x\right)=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x-16\right)=0\)
hay \(x\in\left\{0;-3;\dfrac{-3+\sqrt{73}}{2};\dfrac{-3-\sqrt{73}}{2}\right\}\)
c: \(\Leftrightarrow6x^4-18x^3-17x^3+51x^2+11x^2-33x-2x+6=0\)
\(\Rightarrow\left(x-3\right)\left(6x^3-17x^2+11x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x^3-12x^2-5x^2+10x+x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{3;2;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
d: \(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2+3x+1\right)=0\)
hay \(x\in\left\{1;\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)
a/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(\Leftrightarrow2x^2+3x+5+\frac{3}{x}+\frac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+5=0\)
Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\) (\(\left|a\right|\ge2\))
\(\Leftrightarrow2\left(a^2-2\right)+3a+5=0\)
\(\Leftrightarrow2a^2+3a+1=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
Phương trình vô nghiệm
b/ Số hạng cuối là 4 hay 16 bạn? 4 thì mình ko giải được, phân tách casio cũng ko được
c/ ĐKXĐ:\(\left[{}\begin{matrix}-2\le x\le-1\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow2x^2+x+2-5\sqrt{\left(x-2\right)\left(x+1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)-5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)
\(\Leftrightarrow2a^2+3b^2-5ab=0\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)
a) x3 + 4x2 - 29x + 24 = 0
<=> x3 - x2 + 5x2 - 5x - 24x + 24 = 0
<=> x2(x - 1) + 5x(x - 1) - 24(x - 1) = 0
<=> (x - 1)(x2 + 5x - 24) = 0
\(\Leftrightarrow\left[\begin{matrix}x-1=0\\x^2+5x-24=0\end{matrix}\right.\)
+) x - 1 = 0 <=> x = 1
+) x2 + 5x - 24 = 0
\(\Delta=5^2+4.1.24=121\Rightarrow\sqrt{\Delta}=11\)
Phương trình có 2 nghiệm phân biệt: \(x_1=\frac{-5+11}{2}=3;x_2=\frac{-5-11}{2}=-8\)
Vậy ...
a, Ta có : \(x^3-5x^2+8x-4=0\)
=> \(x^3-x^2-4x^2+4x+4x-4=0\)
=> \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=> \(\left(x-1\right)\left(x-2\right)^2=0\)
=> \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b, Ta có : \(x^4-4x^2+12x-9=0\)
=> \(x^4-x^3+x^3-x^2-3x^2+3x+9x-9=0\)
=> \(x^3\left(x-1\right)+x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x^3+3x^2-2x^2-6x+3x+9\right)=0\)
=> \(\left(x-1\right)\left(x^2\left(x+3\right)-2x\left(x+3\right)+3\left(x+3\right)\right)=0\)
=> \(\left(x-1\right)\left(x+3\right)\left(x^2-2x+3\right)=0\)
Mà \(x^2-2x+3=\left(x-1\right)^2+2>0\)
=> \(\left(x-1\right)\left(x+3\right)=0\)
=> \(\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
c, Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
=> \(\left(x^2+x+4x+4\right)\left(x^2+2x+3x+6\right)-24=0\)
Đặt \(x^2+5x=a\) ta được phương trình :\(\left(a+4\right)\left(a+6\right)-24=0\)
=> \(a^2+4a+6a+24-24=0\)
=> \(a\left(a+10\right)=0\)
=> \(\left[{}\begin{matrix}a=0\\a+10=0\end{matrix}\right.\)
- Thay lại \(x^2+5x=a\) vào phương tình ta được :\(\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(VL\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
( tự kết luận dùm mình nha )
a/ \(x^3-4x^2+4x-x^2+4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b/ \(\Leftrightarrow x^4+2x^3-3x^2-2x^3-4x^2+6x+3x^2+6x-9=0\)
\(\Leftrightarrow x^2\left(x^2+2x-3\right)-2x\left(x^2+2x-3\right)+3\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-2x+3\right)=0\)
\(\Leftrightarrow x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
c/ \(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+4=t\)
\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+5x+4=4\\x^2+5x+4=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)