Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)
2.
\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)
4.
\(cos3x+cosx+cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
5.
\(sin6x+sin2x+sin4x=0\)
\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)
\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)
6. ĐKXĐ; ...
\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)
\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)
\(\Leftrightarrow tan3x=1\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)
a. ĐKXĐ: ...
\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow\frac{sin2x.cosx+cos2x.sinx}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow sin3x\left(\frac{cosx.cos2x+cos3x}{cosx.cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{cosx\left(2cos^2x-1\right)+4cos^3x-3cosx}{cosx.cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{6cos^2x-4}{cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{3cos2x-1}{cos2x.cos3x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=\frac{1}{3}\end{matrix}\right.\)
b.
\(cos2x\left(2cos^22x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow4cos^32x-2cos2x-1=0\)
Pt bậc 3 này ko giải được, chắc bạn ghi nhầm đề
c. ĐKXĐ: ...
\(\frac{cosx}{sinx}-\frac{sinx}{cosx}=cosx-sinx\)
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx.cosx}=cosx-sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=...\\\frac{cosx+sinx}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx+sinx=sinx.cosx\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow t=\frac{t^2-1}{2}\Rightarrow t^2-2t-1=0\Rightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\left(l\right)\\t=1-\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{2}}{\sqrt{2}}\Rightarrow x=...\)
a) tan(2x + 1)tan(3x - 1) = 1 ⇔ = 1.
Với điều kiện cos(2x + 1)cos(3x - 1) ≠ 0 phương trình tương đương với
cos(2x + 1)cos(3x - 1) - sin(2x + 1)sin(3x - 1) = 0
⇔ cos(2x + 1 + 3x - 1) = 0 ⇔ 5x = + k π ⇔ x = + , k ∈ Z.
Cần chọn các k nguyên để x = + không thỏa mãn điều kiện của phương trình (để loại bỏ). Điều này chỉ xảy ra trong các trường hợp sau:
(i) x = + làm cho cos(2x + 1) = 0, tức là
cos[2( + ) + 1] = 0 ⇔ + 1 = + lπ, (l ∈ Z)
⇔ π( - ) = 1 ⇔ π = , suy ra π ∈ Q, vô lí.
Vì vậy không có k nguyên nào để x = + làm cho cos(2x + 1) = 0.
(ii) x = + làm cho cos(3x - 1) = 0. Tương tự (i),ta cũng thấy không có k nguyên nào để x = + làm cho cos(3x - 1) = 0.
Vậy ∀ k ∈ Z, x = + đều là nghiệm của phương trình đã cho.
b)Đặt t = tan x, phương trình trở thành
t + = 1 ⇔ -t2 + 3t = 0 (điều kiện t ≠ 1) ⇔ t = 0 hoặc t = 3 (thỏa mãn)
Vậy tan x = 0 ⇔ x = kπ
tan x = 3 ⇔ x = arctan 3 + kπ (k ∈ Z)
a) Đặt t = cos, t ∈ [-1 ; 1] thì phương trình trở thành
(1 - t2) - 2t + 2 = 0 ⇔ t2 + 2t -3 = 0 ⇔
Phương trình đã cho tương đương với
cos = 1 ⇔ = k2π ⇔ x = 4kπ, k ∈ Z.
b) Đặt t = sinx, t ∈ [-1 ; 1] thì phương trình trở thành
8(1 - t2) + 2t - 7 = 0 ⇔ 8t2 - 2t - 1 = 0 ⇔ t ∈ {}.
Các nghiệm của phương trình đã cho là nghiệm của hai phương trình sau :
và
Đáp số : x = + k2π; x = + k2π;
x = arcsin() + k2π; x = π - arcsin() + k2π, k ∈ Z.
c) Đặt t = tanx thì phương trình trở thành 2t2 + 3t + 1 = 0 ⇔ t ∈ {-1 ; }.
Vậy
d) Đặt t = tanx thì phương trình trở thành
t - + 1 = 0 ⇔ t2 + t - 2 = 0 ⇔ t ∈ {1 ; -2}.
Vậy
tan(2x+10o)+cot(x)=0
<=> tan(2x+10o)+tan(90o-x)=0
<=>tan(x+100o)*[1-tan(2x-10o)*tan(90o-x)]=0
*tan(x+100o)=0 => x=....
*1-tan(2x-10o)*tan(90o-x)=0
<=> tan(2x-10o)=tanx <=> x=....
a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)
=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi
=>x=pi/8+kpi hoặc x=-pi/8+kpi
b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)
=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi
=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi
=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi
d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)
=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi
=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi
=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2
e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)
=>x-pi/3=kpi
=>x=kpi+pi/3
a/ \(tan3x=tanx\Rightarrow3x=x+k\pi\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)
b/ \(tan3x+tanx=0\Rightarrow tan3x=-tanx=tan\left(\pi-x\right)\)
\(\Rightarrow3x=\pi-x+k\pi\Rightarrow4x=\pi+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{4}\)
c/ \(tan2x-tanx=0\Rightarrow tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\Rightarrow x=k\pi\)
d/ \(tan2x+tanx=0\Rightarrow tan2x=-tanx=tan\left(\pi-x\right)\)
\(\Rightarrow2x=\pi-x+k\pi\Rightarrow3x=\pi+k\pi\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{3}\)