K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1 2019

a/ \(x\ge0\)

\(\sqrt{x}+\sqrt{x+7}+2x+7+2\sqrt{x^2+7x}-42=0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+\left(\sqrt{x}+\sqrt{x+7}\right)^2-42=0\)

Đặt \(\sqrt{x}+\sqrt{x+7}=t>0\)

\(\Rightarrow t^2+t-42=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-7< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)

\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) \(\Leftrightarrow\left\{{}\begin{matrix}29-2x\ge0\\4\left(x^2+7x\right)=\left(29-2x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{29}{2}\\144x=841\end{matrix}\right.\) \(\Rightarrow x=\dfrac{841}{144}\)

NV
5 tháng 1 2019

b/ \(x^2< 2;x\ne0\)

Đặt \(\sqrt{2-x^2}=a>0\) ta được hệ:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{a}=2\\x^2+a^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+a=2ax\\\left(x+a\right)^2-2ax=2\end{matrix}\right.\) \(\Rightarrow4\left(ax\right)^2-2ax-2=0\)

\(\left[{}\begin{matrix}ax=1\\ax=\dfrac{-1}{2}\end{matrix}\right.\Rightarrow\) \(\left[{}\begin{matrix}x+a=2\\x+a=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+\sqrt{2-x^2}=2\left(1\right)\\x+\sqrt{2-x^2}=-1\left(2\right)\end{matrix}\right.\)

- Xét (1): \(1.x+1.\sqrt{2-x^2}\le\sqrt{\left(1^2+1^2\right)\left(x^2+2-x^2\right)}=2\)

Dấu "=" xảy ra khi \(x=\sqrt{2-x^2}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=1\end{matrix}\right.\) \(\Rightarrow x=1\)

- Xét (2): \(\sqrt{2-x^2}=-1-x\) \(\Leftrightarrow\left\{{}\begin{matrix}-1-x\ge0\\2-x^2=\left(-1-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-1\\2x^2+2x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{3}}{2}\\x=\dfrac{-1+\sqrt{3}}{2}>-1\left(l\right)\end{matrix}\right.\)

Vậy pt đã cho có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=\dfrac{-1-\sqrt{3}}{2}\end{matrix}\right.\)

20 tháng 8 2018

a) điều kiện xác định \(x-2\ge0vàx^2-4x+3\ge0\)

\(pt\Leftrightarrow x^2-4x+3=x-2\Leftrightarrow x^2-5x+5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{2}\\x=\dfrac{5-\sqrt{5}}{2}\left(L\right)\end{matrix}\right.\) bạn giải nó bằng cách giải den ta nha .

vậy \(x=\dfrac{5+\sqrt{5}}{2}\)

b) điều kiện xác định : \(x\ge1\)

đặc \(\sqrt{x-1}=t\left(t\ge0\right)\)

\(pt\Leftrightarrow2\left(\dfrac{t}{2}-3\right)=\dfrac{2.2t}{3}-\dfrac{1}{3}\) giải phương trình này rồi thế ngược lại là xong

c) điều kiện xác định : \(x\ge\dfrac{7}{9}\)

\(pt\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\) vậy \(x=6\)

d) câu cuối chờ nhát h mk chưa nghỉ ra

20 tháng 8 2018

d) Ta có pt \(4+\sqrt{2x+6-6\sqrt{2x-3}}=\sqrt{2x-2+2\sqrt{2x-3}}=0\)

\(\Leftrightarrow4+\sqrt{2x-3-6\sqrt{2x-3}+9}=\sqrt{2x-3-2\sqrt{2x-3}+1}\Leftrightarrow4+\left|\sqrt{2x-3}-3\right|=\left|\sqrt{2x-3}-1\right|\)

Đặt \(\sqrt{2x-3}=a\left(a\ge0\right),pt\Leftrightarrow4+\left|a-3\right|=\left|a-1\right|\)

xét \(a\ge3,pt\Leftrightarrow4+a-3=a-1\Leftrightarrow0a=1\left(VN\right)\)

xét \(a\le1.pt\Leftrightarrow4+3-a=1-a\Leftrightarrow0a=6\left(VN\right)\)

xét \(3>x>1,pt\Leftrightarrow4+3-a=a-1\Leftrightarrow a=1\)(k thỏa mãn )

=> pt vô nghiệm !

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

7 tháng 12 2018

@Akai Haruma @Nguyễn Huy Tú

17 tháng 1 2019

@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng