Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.
Câu 1: Mình làm mẫu câu a thôi nhé.
a/ \(x^2-2\sqrt{3}x-6=0\)
( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )
\(\Delta=b^2-4ac\)
\(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)
Vậy:..
Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)
( a = 1; b = -2(2m+1); c = 4m^2 + 2 )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)
\(=4\left(4m^2+4m+1\right)-16m^2-8\)
\(=16m^2+16m+4-16m^2-8\)
\(=16m-4\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)
Bài 1:
Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)
\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)
1. ĐKXĐ: $\xgeq \frac{-6}{5}$
PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)
\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)
\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)
Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$
Do đó: $x^2-x-2=0$
$\Leftrightarrow (x+1)(x-2)=0$
$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)
Bài 2: Tham khảo tại đây:
Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24
a) -5x2 + 3x + 2 = 0 (a = -5; b = 3; c = 2)
\(\Delta=3^2-4\cdot\left(-5\right)+2=31\)
=> Phương trình có nghiệm
Ta có a + b + c = -5 +3 +2 = 0
Nên phương trình có 2 nghiệm:
x1= 1; x2 = \(\dfrac{c}{a}\) = \(\dfrac{2}{-5}\) = \(\dfrac{-2}{5}\)
b) 7x2 + 6x - 13 = 0 (a = 7; b = 6; c = -13)
\(\Delta=6^2-4\cdot7\cdot\left(-13\right)=400\)
Nên phương trình có nghiệm
Ta có a + b + c = 7 + 6 +(-13) = 0
Nên phương trình có 2 nghiệm:
x1= 1; x2 = \(\dfrac{c}{a}=\dfrac{-13}{7}\)
c) x2 - 7x + 12 = 0 (a = 1; b = -7; c = 12)
\(\Delta\) = (-7)2 - 4 * 1 * 12= 1
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{1}}{2\cdot1}=4\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{1}}{2\cdot1}=3\)
Vậy phương trình có 2 nghiệm x1=4 và x2=3
d)-0,4x2 +0,3x +0,7 =0 (a = -0,4; b= 0,3; c= 0,7)
\(\Delta=\left(0,3\right)^2-4\cdot\left(-0,4\right)\cdot0,3=0,57\)
Nên phương trình có nghiệm
Ta có a - b + c = (-0,4) - 0,3 + 0,7 = 0
Nên phương trình có 2 nghiệm x1 = -1; \(x_2=\dfrac{-c}{a}=\dfrac{-0,7}{-0,4}=\dfrac{7}{4}\)
e)3x2+(3-2m)x-2m =0(a= 3;b=3-2m;c= -2m)
\(\Delta=\left(3-2m\right)^2-4\cdot3\cdot\left(-2m\right)\)
= 9 - 12m + 4m +24m = 9 + 16m
Do \(\left\{{}\begin{matrix}9>0\\16m\ge0\end{matrix}\right.\)nên phương trình có nghiệm
Ta có a - b + c = 3- (3-2m) +( -2m)
= 3 -3 + 2m - 2m = 0
Nên phương trình có 2 nghiệm
x1= - 1; x2=\(\dfrac{-c}{a}=\dfrac{-\left(-2m\right)}{3}=\dfrac{2m}{3}\)
f) 3x2 - \(\sqrt{3}\)x - ( 3+\(\sqrt{3}\))=0
(a= 3; b= \(-\sqrt{3}\); c=\(-\left(3+\sqrt{3}\right)\))
\(\Delta=\left(-\sqrt{3}\right)^2-4\cdot3\cdot\left(-\left(3+\sqrt{3}\right)\right)\)
= 39+12\(\sqrt{3}\)
Nên phương trình có nghiệm
Ta có a - b +c = 3 - (\(-\sqrt{3}\)) + (-(3+\(\sqrt{3}\))) = 0
Phương trình có 2 nghiệm x1= -1;
x2=\(\dfrac{-c}{a}=\dfrac{-\left(-\left(3+\sqrt{3}\right)\right)}{3}=\dfrac{3+\sqrt{3}}{3}\)
c/
\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\)
\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)
Đặt \(x^2-x=t\)
\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)
a/ ĐKXĐ: ...
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(2\left(t^2-2\right)-3t+2=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)
b/ Với \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)
\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)
\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)
b)\(9\left(x-2\right)^2-4\left(x-1\right)^2=\left(9x^2-36x+36\right)-\left(4x^2+8x-4\right)\)
\(=9x^2-36x+36-4x^2+8x-4\)
\(=5x^2-28x+32\)
\(=\left(x-5\right)\left(5x-8\right)\)
\(\hept{\begin{cases}x-5=0\\5x-8=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=\frac{8}{5}=1\frac{3}{5}\end{cases}}\)
a) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)
\(\left(x^2+2x+1\right)-\left(4x^2-8x+4\right)=0\)
\(-3x^2+10x-3=0\)
\(\left(3-x\right)\left(3x-1\right)=0\)
\(\hept{\begin{cases}3-x=0\\3x-1=0\end{cases}}\)
\(\hept{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
a/ \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b/ \(\Delta=9+8=17\)
Phương trình có 2 nghiệm pb: \(\left\{{}\begin{matrix}x_1=\frac{3-\sqrt{17}}{4}\\x_2=\frac{3+\sqrt{17}}{4}\end{matrix}\right.\)
c/ \(\Delta=\left(2+\sqrt{3}\right)^2-8\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
Phương trình có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=\frac{2+\sqrt{3}+2-\sqrt{3}}{2}=2\\x_2=\frac{2+\sqrt{3}-\left(2-\sqrt{3}\right)}{2}=\sqrt{3}\end{matrix}\right.\)
d/ \(\Delta=\left(2m-1\right)^2-4\left(m^2+m\right)=1\)
Phương trình có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=\frac{2m+1+1}{2}=m+1\\x_2=\frac{2m+1-1}{2}=m\end{matrix}\right.\)